ﬁlg berry Powered by: Data Science Center of Excellence

Analyzing Diabetes with H20 & R

(feat. Plotly)

By Josh W. Smitherman - Chief Data Scientist
JW@colaberry.com

Better Healthcare Insights

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence


mailto:JW@colaberry.com

About the Author

Josh W. Smitherman is Chief Data Scientist at Colaberry
Inc. where he leads the data science practice of integrated
advanced analytical capabilities into client’'s and
organization’s value chain processes. Josh holds a Masters
of Operations Research from Southern Methodist University
in Dallas Texas, Master Certificate in Applied Statistics from
Penn State, and a B.B.A in Management Information
Systems from Texas Tech University. Certified Lean Six
Sigma Black Belt, where he has implemented continuous
improvement and analytical processes within many
organizations. He has worked on data science projects over
the last 10 years in retail, CPG, healthcare (clinical trails and
patient outcome health), consumer and auto financial
services, oil and gas, and supply chain. He has worked with
companies like Wal-Mat, GE, Dr. Pepper Snapple Group,
Pergo, Mondelez, MyHealth Access Network, CBRE,
Costco, Lowe’s, Home Depot, State Farm, UK healthcare
networks, and many others.

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



1. Introduction

* What is R? What is H20.ai and how they work together...................... 4
* Review of NHANES dataset. ... e, 5
» Diabetes analytics approach using H20.ai + R............ocoooiiiiiinne, 6

2. Expository data analytics (EDA) feat. Plotly

o EDAWIth Plotly. ... 7
« H20 imputation for missing values.............ccooiiiiiiiiii . 11
o Summary Of EDA. ... 21
3. Clustering using H20+R
* Clustering NHANES - diabetes analysis...........cccoooviiiiiiiiiien. 22
» Determine the appropriate number of clusters.......................l. 23
* Run kmeans and review CluSter Sizes..........cooiiiiiiiiiiiii i 25
* Clustering and diabetes..........coooiiii 28
4. Predicting diabetes using H20+R
* Predictive models overview in H20.........c.ooiiiii e 31
* Running Distributed Random Forest by cluster.........................o.. . 32
* Running Gradient Boosting Machine by cluster.........................ooiil. 35
* Running General Linear Model by cluster.............cccooooiiii, 37
* Running Deep Learning by cluster............ccooiiiiiiiii i 39
« Bringingitalltogether....... ... 41
5. Summary / Conclusion
* What did we 1earn/do?...........coooiiii e 46
» Review of H20 capabilities. ... 46
» Future enhancements & recommendations..............cccooiiiiiiiiiiinnnnnn. 46
3

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



1. Introduction

What is R?

R is a widely used (and free) software environment for statistical computing and graphics. Many academic
institutions and organizations contribute to the wide array of packages that enable R to quickly gain the latest
and greatest machine learning, statistical, and/or graphical capabilities. When connected with RStudio (an R
integrated development environment or IDE) helps users to quickly develop and deploy analytical results.

If you are not familiar with these tools, access the links below for more information:

https://www.r-project.org/

https://www.rstudio.com/

What is H20.ai?

H20.ai is an in memory engine that allows you to run R code (and others languages such as Python, Java,
etc.) in a distributed fashion. This helps when you need to run large or higher computational algorithms for
quicker and deeper analytics verses a single node. H20.ai has a nice set of pre-built packages for clustering,
gradient boosting machine, random forest, deep learning, and others. Another great appeal to using this
environment is from a programming API standpoint to process fast computations along with applications for
analytics results.

If you are not familiar with these tools, access the links below for more information:

http://www.h20.ai/

http://www.h20.ai/resources/

http://learn.h20.ai/content/index.html

How do R+H20.ai work together?

As mentioned before, H20O.ai is an in-memory environment where R code is executed, the in-memory
computation is optimized to produce scalable data science results from your algorithms and functions. In my
own experience, this capability means what took me hours/days now | can do in seconds/minutes without the
worry of writing parallelized code. Also, with the many parameters in the well built packages such as DRF or
GBM, allows tremendous flexibility in the interactions and parameter setting capabilities due to H20.ai
enhanced scalability features.

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence


https://www.r-project.org/
https://www.rstudio.com/
http://www.h2o.ai/
http://www.h2o.ai/resources/
http://learn.h2o.ai/content/index.html

1. Introduction

Review of NHANES dataset

To study the attributes and feature of diabetes we will use the NHANES or National Health and Nutrition
Examination Study dataset. According to the NHANES website, the NHANES data represents:

“The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to
assess the health and nutritional status of adults and children in the United States. The survey is unique in
that it combines interviews and physical examinations.”

US National Health and Nutrition Examination Study
http://www.cdc.gov/nchs/nhanes.htm

The R implantation of the NHANES dataset is found in the package “NHANES” and the dataset name we will
access is called NHANESraw (NHANES 2009-2012 with adjusted weighting). Installing the packages and
accessing the library provides the dataset within your R session.

install.packages("NHANES")
library(NHANES)
dimnames(NHANESraw)[2]

> dimnames {HHANESraw)}[2]

[[11]1

[1] "I1D™ "Surveyyr' "Gender™ "Age™ "AgeMonths™ "Race1"

[7] "Race3d™ "Education" "MaritalStatus™ "HHIncome* "HHIncomeMid™ "Poverty”
[13] “"HomeRooms* “HomeOwn* “Work" “Weight" “Length* "HeadCirc"
[19] "Height" “BHI* "BMICatUnder2Byrs™ “BHI_WHO" "“Pulse™ “"BPSysAue*
[25] “BPDiafve™ “BPSys1* “BPDiat1" “BPSys2* “BPDia2" “BPSys3*

[31] "BPDia3" "Testosterone" "DirectChol” “TotChol" "UrineUol1" "UrineFlow1"

[37] "UrineUol2™ "UrineFlow2" "Diabetes™ "Diabetesnge "HealthGen" “DaysPhysHlthBad"
[43] "DaysHentHlthBad" “LittleInterest" “Depressed" "nPregnancies" "nBabies" “AgeistBaby"

[49] "SleepHrsHight™ "SleepTrouble® “PhysfActive” “PhysActiveDays" “"TUHrsDay" “"CompHrsDay*

[55] "TUHrsDayChild" "CompHrsDayChild" "Alcohol12Plus¥r" “AlcoholDay™ "Alcohol¥Year" "SmokeMHow"

[61] "Smoke188™ "Smokenge" "Marijuana™ "AgeFirstMarij™ "RegularMarij" "AgeRegHarij"”
[67] "HardDrugs" “SexEver" “SexAge" "SexHumPartnLife" “SexMumPartYear" “SameSex"

[73] “SexOrientation” “WTINT2YR™ “WTHMEC2YR™ “SDHUPSU* “SDHMUSTRA™ “PregnantHow"

To access the field definitions type ?NHANESraw. Examples below:

Gender
Gender (sex) of study participant coded as male or female Physical Measurements
Age For mare information on body measurements, see http-//www cdc gownchs/nhanes/nhanes2009-2010/BMX_F htm and
Age in years at screening of study participant. Note: Subjects 80 years or older were recorded as 0. hittpr/fuiw cde gov/nchs/nhanes/nhanes2011-2012/BMX_G htm.
AgeDecade Weight
Categorical variable derived from age with levels 0-2, 10-13, 70+ Weight in kg
AgeMonths Length
Age in manths at screening of study participant. Reported for participants aged 0 to 79 years for 2009 ta 2010 data Reported for Recumbent length in cm. Reported for participants aged 0 - 3 years.

participants aged 0 ta 2 years for 2011 to 2012 data.
HeadCirc
Race1
Head circumference in cm. Reported for participants aged 0 years (0 - 6 months).
Reported race of study participant: Mexican, Hispanic. White. Black, or Other. Height
eig!
Race3
Standing height in cm. Reported for participants aged 2 years or older.
Reported race of study participant, including non-Hispanic Asian category: Mexican, Hispanic, White, Black, Asian, or Other. Mot availale

for 2009-10 BMI
Education Body mass index (weight/height2 in kg/m2). Reported for participants aged 2 years or older.
Edi | level of study Reported for aged 20 years or older. One of 8thGrade, 9-11thGrade, HighSchool, BMICatUnder20yrs

SomeCollege, of CollegeGrad.
Body mass index category. Reported for participants aged 2 to 19 years. One of UnderWeight (BMI < th percentile) HormiWeight (BMI
MaritalStatus Sth to < B5th percentile), CverWeight (BMI 85th to < 95th percentile), Cbes=e (BMI == 95th percentile).

Marital status of study participant. Reparted for participants aged 20 years or older. One of Married. Widowed, Divorced, Separated,
NeverMarried o TiveBartner (lvin with narner)

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence


http://www.cdc.gov/nchs/nhanes.htm

1. Introduction

Diabetes analytics approach using H20.ai + R

We will use the NHANESraw dataset in drawing insights into the features that help categorize and predict
diabetes. Our analytical plan is as follows:

1) Explore the dataset by performing exploratory data analytics (EDA) using statistical tools and graphs (via
Plotly).

2) Import the dataset within the H20O.ai environment and perform imputation on missing values and compare
those results to the EDA analysis to ensure structural difference are noted.

3) Perform clustering of the numerical features using H20.ai functions for grouping patients into categories
that help in identifying segments that are more prone to diabetes.

4) Perform predictive analytics using H20.ai functions Gradient Boosting Machine (GBM), Distributed
Random Forest (DRF), and Deep Learning on the target variable Diabetes using all the features in the
dataset (both imputed and note imputed) to help explain the likelihood that someone could contract the
dieses. We will perform accuracy and quality model verification steps as well to ensure model
performance is noted along the way.

Installing the needed packages for this demonstration

We will be using R to create the instance of H20.ai and load medical data from the NHANES data set. To
walk through the examples in this document, please ensure you have these packages installed.

install.packages(c(“h20”, “plotly”, “NHANES”,”reshape”,”ggplot2”,”dplyr”))

1) H20
1) Alternative methods to install h2o
install.packages("h20", repos=(c("http://h20-release.s3.amazonaws.com/h2o/rel-jacobi/2/R",
getOption("repos"))))

For the latest recommended version, download the latest stable H20-3 build
from the H20 download page:

1. Go to http://h20.ai/download.

2. Choose the latest stable H20-3 build.

3. Click the \Install in R" tab.

4. Copy and paste the commands into your R session.

2) plotly
3) NHANES

4) reshape
5) ggplot2
6) dplyr

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Diabetes prevalence within the dataset and by features

We will perform our EDA with analysis on the target variable, Diabetes. We want to know:
* How many cases have diabetes verses those that do not have diabetes? (prevalence measure)

* What are the distributions of key features such as BMI, Cholesterol, Age, etc. for those with diabetes
verses those that do not have diabetes?

* What correlations (linear or non- linear relationships) can be detected across the set of features both in
relation to Diabetes / None-Diabetes and the overall holistic view?

What is Plotly?

Plotly is an open source framework that enables data scientist to develop interactive, browser-based charting
built on JavaScript graphing library, plotly.js. This allows data scientist to use API languages such as R,
Python, Java, etc. to build powerful visualizations with interactive capabilities.

We will use the Plotly API for R in this demonstration. To load and use the package in R, reference the below
code:

install.packages(“plotly")

# or install development version from GitHub
devtools::install_github("ropensci/plotly™)
library(plotly)

Examples and references by API can be found at the below web link:

https://plot.ly/

NHANES basic summary statistic

Let’s begin with a basic summary of the statistics and structure of the NHANES data set.
options(digits=2)

library(NHANES)

## Extract NHANES to DF

nhanesDF <- as.data.frame(NHANESraw)
str(nhanesDF)
summary(nhanesDF$Diabetes)

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence


https://plot.ly/

> str{nhanesDF)

‘data.frame” : 20293 obs. of 78 variables:
$ ID : int 51624 51625 51626 51627 51628 51629 51638 51631 51632 51633 ...
$ Surveyyr : Factor w/ 2 levels “2869_16","2611_ 12" 1111111111 ...
$ Gender : Factor w/ 2 levels “female”,'male: 2 2 2 2121122 ...
$ nge :int 34 4 16 10 68 26 49 1 18 88 ...
$ AgeMonths » int 489 49 282 131 722 313 596 12 124 NA ...
% Racel : Factor w/ % levels "Black","Hispanic”,..: 451113 4% 424 ...
$ Race2 : Factor w/ 6 levels "Asian","Black'",..: MA HA HA HA MA HMA HA HA HA HA ...
$ Education : Factor w/ 5 levels "8th Grade™,"9? - 11th Grade",..: 3 HA HA HA 3 2 4 HA HA &4 ...
$ HMaritalStatus : Factor w/ 6 levels "Divorced”,"LivePartner™,..: 3 HA MA HA &6 2 2 HA MHA 3 ...
$ HHIncome : Factor w/ 12 levels "8-4900%,"188688-14999",..: 5 4 7 4 2 56 6 18 3 ...
$ HHIncomeMid : int 30000 22500 560000 22500 12500 30000 40000 4OO0A 70000 17580 ...
$ Poverty Dnum 1.36 1.87 2.27 8.81 0.69 1.81 1.91 1.36 2.68 1.27 ...
$ HomeRooms tint 695 64645574 .
$ HomeDuwn : Factor w/ 3 levels "Ouvn*,"Rent”,"0ther: 1 112 222211 ...
York : Factor w/ 3 levels "Looking","NotWorking™,..: 2 HA 2 NA 2 3 2 NA NA 2 ...
Weight D num BF.4 17 F2.3 39.8 116.8 ...
Length :num HA HA HA HA HA HA HA 75.7 HA MNA ...
HeadCirc D num HA HA HA HA HA HA HA HA HA HA ...
Height : num 165 185 181 148 166 ...
BHMI I num 32.2 15.3 22 18.2 424 ..
BHICatUnder2@yrs: Factor w/ 4 levels "UnderWeight™,..: HA HA HA HA HA HA HA HA HA HA ...
BMI_WHO : Factor w/ 4 levels "12.8 18.5","18.5 to_24.9",..: 41 2144 4 HA 13 ...
Pulse :int 7@ HA 68 68 72 72 86 Hp 70 88 ...
BPSysAve : int 112 NA 189 93 150 184 112 NA 108 139 ...
BPDiafAve :int 85 HA 59 41 68 49 75 NA 53 43 ...
BPSys1 : int 114 NA 112 92 154 182 118 NA 186 142 ..
$ BPDiat : int 88 HA 62 36 78 58 B2 NA 68 62 ...
$ BPSys?2 : int 114 HA 114 94 150 1084 108 NA 106 148 ...
$ BPDia2 :int 88 HA 68 44 68 48 74 NA 50 46 ...
$ BPSys3 : int 112 HA 104 92 150 184 116 NA 110 138 ...
$ BPDia3 :int 82 HA 58 38 68 58 76 NA 56 48 ...
$ Testosterone : num HA HA HA HA HA HA HA HA HA HA ...
$ DirectChol Dnum 1.2%9 HA 1.55 1.89 1.16 1.16 1.16 HA 1.58 1.94 ...
$ TotChol D num 3.49 HA 4.97 4,16 5.22 4 14 6.7 HA 414 471 ...
$ UrineVol1 : int 352 NA 281 139 30 282 77 HAa 39 128 ...
UrineFlouwd : num HA HA B.415 1.678 B.476 ...
UrineVol2 :int HNA HA HA HA 246 NA HA NA NA HA ...
UrineFlow2 : num HA HA HA HA 2.51 HA HA HA HA MNA ...
Diabetes : Factor w/ 2 levels "Ho","Yes": 1111211111 ...
DiabetesAge s int HA MA HA HA 56 HA MA HA HA HA ...
HealthGen : Factor w/ 5 levels "Excellent”,"Ugood™,..: 3 NA 2 HA 4 3 3 HA HA 1 ...
DaysPhysHlthBad : int @ MR 2 HA 28 2 8 HA NA @ ...
DaystientHlthBad : int 15 HA @ NA 25 14 10 HA NA B ...
LittleInterest : Factor w/ 3 levels "Hone","Several™,..: 3 HA HA HA 3 1 2 HA HA 1 ...
Depressed : Factor w/ 3 levels “"Hone","Several™,..: 2 HA HA HA 3 3 2 HA HA 1 ...
nPregnancies :int HNA HA NA HA 1 HA 2 NA HA NA ...
nBabies : int HNA HNA NA HA 1 NA 2 NA HA NA ...
fAge1stBaby : int HA HA HA HA HA HA 27 HA HA HA ...
S$leepHrsHight :int 4 NA 8 HA 4 4 B NA NA &6 ...
SleepTrouble : Factor w/ 2 levels "Ho™","Yes™: 2 HA 1 HA 1 1 2 HA HA 1 ...
by Physhactive : Factor w/ 2 levels "Ho™,"Yes™: 1 HA 2 HA 1 2 1 HA HA 2 ...
PhyshActiveDays : int HNA HA 5 HA HA 2 NA HA NA & ...
TUHrsDay : Factor w/ 7 levels "8_hrs™,"8_to_1_hr",..2 NA NA NA NA NA NA NA NA MA NA ...
CompHrsDay : Factor w/ 7 levels "8_hrs","8_to_1_hr",..z HA MNA NA NA NA NA NA NA NA HA ...
TUHrsDayChild :int HNA & HA 1 HA HA NA HA 1 NHA ...
CompHrsDayChild : int HNMA 1 HA 1 NA HA NA MA @ NA ...
Alcohol12PlusYr : Factor w/ 2 levels "Ho","Yes™”: 2 HA HA HA 1 2 2 HA HA 2 ...
AlcoholDay :int HNA HA NA HA HA 19 2 HA NA 1 ...
fAlcohol¥Year :int @ HA HA HA 8 48 28 HA HA 52 ...
SmokeMow : Factor w/ 2 levels "Ho","Yes"™: 1 HA HA HA 2 1 2 HA HA 1 ...
Smoke1088 : Factor w/ 2 levels "Ho™,"Yes™: 2 HA HA HA 2 2 2 MA NA 2 ...
$ SmokeAge :int 18 HA NA HA 16 15 38 NA HA 16 ...
Harijuana : Factor w/ 2 levels "Ho™,"Yes™: 2 HA HA HA HA 2 2 NA HA HA ...
AgeFirstHarij : int 17 HA HA HA HA 18 18 HA HA HA ...
RegularMarij : Factor w/ 2 levels "Ho","Yes™: 1 HA HA HA HA 2 1 NA HA NA ...
AgeRegMarij :int HNA HA HA HA HA 12 HA NA HA NA ...
HardDrugs : Factor w/ 2 levels "Ho™,"Yes™: 2 HA HA HA 1 2 2 HA HA NA ...
SexEver : Factor w/ 2 levels "Ho™,"Yes™: 2 HA HA HA 2 2 2 HA HA NA ...
SexfAge :int 16 HA NA HA 15 9 12 HA HA NA ...
SexHumPartnLife : int # HA HA HA 4 18 18 HA HA HA ...
SexHumPartYear : int 1 NA HA NHA HA 1 1 NA HA NA ...
SameSex : Factor w/ 2 levels "Ho'"™,"Yes™: 1 HA HA HA 1 1 2 HA HA HA ...
% SexOrientation : Factor w/ 3 levels "Bisexual”,"Heterosexual”,..: 2 HA HA HA HA 2 2 HA HA MA ...
UTINT2YR D num 88181 53981 13953 11665 200898 ...
WTHEC2YR Donum 81529 56995 14589 12842 21668 ...
SDHUPSU tint 1212212221 ...
SDHUSTRA : int 83 79 84 86 75 88 B85 86 88 77 ...
PregnantMow : Factor w/ 3 levels "“Yes',"No”,"Unknown*™: HA HA HA HA HA HA NA HA HA HA ...

summary(nhanesDF)



> summary(nhanesDF)
ID

Survey¥r Gender Age AgeHonths Race1 Race3
Min. 51624  2089_18:18537  female:18212  Hin. : @ Hin. 8 Black 4648 Asian : 1282
1st Qu 2811_12: 9756 male :1@881 1st Qu.:18 1st Qu.: 98 Hispanic:2289 Black = 2683
Median Median :28 Hedian :285 Hexican :3739  Hispanic: 1876
Hean 61778 Mean :32  Hean =352 Vhite :7393 Herican : 1355
3rd Qu.:66843 3rd Qu.:53 3rd Qu.:592 Other 22312 White - 2973
Max. 71916 Max. H:] Hax. 950 other o 387
HA's H HA's 18537
Education MaritalStatus HHIncome HHIncomeHid Poverty HomeRoons HomeOun
8th Grade 1321 Divorced 1258 more 99999 2892  Hin. 2588  HMin. H:] Min. H Own :18939
9 - 11th Grade:1787 LivePartner : 923 25000-34999 2483 1st Qu.: 22588 1st Qu.:1 1st Qu.: &4 Rent : 8715
High School 12595 Married tGBG69  35000-44999:1789 Median : 40008 Hedian :2 Median : 6 Other: 582
Some College :3399 MeverHMarried:2287 750008-99999:1697 Hean o 47386 Hean =2 Hean H ) HA's @ 137
College Grad :2656 Separated HES R 20000-24999 1682 3rd Qu.: 87588 3rd Qu.:4 3rd Qu.: 7
HA's :B53% Widowed 1@27 (0ther) IT67Y HMax. 160680868 Max. H3 Max. 13
HA's t8524 HA's 120876 HA's 12876 HA's :1836 HA's 145
Work Weight Length HeadCirc Height BMI BHMICatUnder2Byrs
Looking : 576 HMin. : 3 Hin. H Min. :32 Min. Hr Min. T2 UnderWeight: 126
NotWorking:5898 1st Qu.: 38 1st Qu.: #1 1st Qu.:39 1st Qu.:158 1st Qu.:28 NormWeight - 2155
Working 16594 Median : 84 Median :u2 Median :162 Median :25 OverWeight : 481
HA's t7233 Hean : B2 Hean HUA Hean =156 Hean t26 Obese - 593
3rd Qu.: 94 3rd Qu.:43 3rd Qu.:172 3rd Qu.:38 HA's 16938
Max . 1116 Max . 48 Hax. 284 Hax. H
HA's 1806088 HA's 19819 HA's 12258 HA's 12279
BMI_WHO BPFSysAve BPDianve BP3Sys1 BPDial BPSys2
12.8 18.5 t3641 Min. Hrd! Hin. | Hin. 72 Hin. HE Min. : 74
18.5_to_24.9:5354 1st Qu.:185 1st Qu.: 58 1st Qu.:186 1st Qu. 1st Qu.:186
25.8_to_29.9:4387 Median :z115 Hedian : &7 Hedian :116 Hedian Median :116
368.8 plus t4565 HMean Hean 66 Hean
NA's 12346 3rd Qu 3rd Qu.: 75 3rd Qu
Max. 172 Max. Hax. 13 Hax. :238 Hax.
HA's 5397 HA*s 5426 HA's 5426 HA*s 6008 HA*s HA's 5812
BPDia2 BPSys3 BPDia3 Testosterone DirectChol TotChol UrineUol1 UrineFlow1
Hin. HE | Min. 74 Hin. : 8 Hin. H a Min. H ] Hin. 2 Hin. HE | Hin. Hl |
1st Qu.: 58 1st Qu.:1684 1st Qu.: 58 1st Qu.: 15 1st Qu.:1 1st Qu.: 4 1st Qu.: 47 1st Qu.: 8
Hedian : 68 Median :116 Median : 66 Median : 36 Median :1 Median 5 Hedian : 88 Hedian : 1
Hean : 66 Mean 118 Mean : 65 Mean : 185 Mean Mean 5 Hean 114 Hean =1
3rd Qu.: 76 3rd Qu.:128 3rd Qu.: 76 3rd Qu.: 343 3rd Qu 3rd Qu.: 5 3rd Qu.:156 3rd Qu.: 1
Hax . 134 Hax . :232 HMax . 128 Hax . 2544 Hax . HMax . 14 Hax . 524 Hax . HL Y]
Hi's 5812 HMHA's 15788 NA's :5788 NA's 13467 Hi's 15458 NA's 5459  Ha's 4218 Ha's 5603
UrineVUol2 UrineFlowz Diabetes DiabetesAge HealthGen DaysPhysHlthBad DaysHentHlthBad
Hin. HE | Hin. H Ho :17754% Hin. 1 Excellent:1389  HMin. H Hin. H |
1st Qu.: 43 1st Qu.: @ Yes : 1786 1st Qu.:48 Ugood t3461 1st Qu.: @ 1st Qu.: 8
Hedian : 82 Median = 1 NA's: 833 Median :50 Good 14959 Median : @ Hedian : @
Hean 112 Mean -1 Mean :58 Fair 12284 Mean HE) Hean HL)
3rd Qu.:160 3rd Qu.: 1 3rd Qu.:68 Poor : 436 3rd Qu.: 3 3rd Qu.: &
Hax . 428 Max . 162 Max . H]] HA's S78ub Hax . :3a Hax . :38
HA's 117585 NA's 17596 NA's =18856 HA's 17862 HA's 17867
LittleInterest Depressed nPregnancies nBabies Age1stBaby SleepHrsNight SleepTrouble PhysActive
None 17825 None 17924 Min. o1 Min. ] Min. t1y Min. -2 No :18877 Ho 6981
Several:1798 Several: 1774 1st Qu.: 2 1st Qu.: 2 1st Qu.:18 1st Qu.: 6§ Yes : 2981 Yes 7377
Most : 893 Host : 814 Hedian : 3 Median : 2 Median :21 Median : 7 Na's: 7235 HA's:6015
HA's 9785 HA's 9779 Hean -3 Hean -3 Hean 22 Hean H
3rd Qu.: &4 3rd Qu.: 3 3rd Qu L 3rd Qu.: 8
HMax. t32 HMax. =17 Hax. t39 Hax. =12
HA's 16891 HA's 16354 HA's 17135 HA's 7261
PhysActiveDays TUHrsDay CompHrsDay TUHrsDayChild CompHrsDayChild Alcohol12PlusYr AlcoholDay
Min. o1 2_hr : 2389 8_hrs : 2586  Hin. H ] Hin. H ] Ho :2828 Min. o1
1st Qu.: 2 1_hr : 1616 8_to_1_hr: 2354 1st Qu 1st Qu.: @ Yes :7u83 1st Qu.: 1
Median : 3 3_hr : 1533 1_hr : 1646  Hedian Hedian : 1 NA's:9998 Median : 2
Mean H More_4 hr: 1275 2 hr : 1129  Hean Hean 3 Mean 3
ard Qu.: & 8_to_1_hr: 1175 3_hr o 562 3rd Qu 3rd Qu.:z 6 3rd Qu.: &4
HMax . 99 {0ther) : 1877 {Dther) : 797 Hax . 99 Hax. = Hax . t82
HA*s 12918 HA's 111228 HA's 11219 HA*s 218865 HA*s 218865 HA's 13300
AlcoholYear SmokeNow Smoke188 Smokenge Marijuana AgeFirstMarij RegularMarij AgeRegMarij
Min. | No - 2779 No :6536 Min. : b No : 3353 Min. H No : 1892 Min. - a
1st Qu.: 1 Yes : 2454 Yes 5235 1st Qu.:1% Yes : 3719 1st Qu.:1% Yes = 1828 1st Qu
Median : 12 NA's:15868 HA"s5:8522  Hedian :17 NA*s:z13221 Median :1é NA*s:16581 Median
Mean Hy Mean =18 Mean 17 Mean
3rd Qu.:164 3rd Qu.:28 3rd Qu.:18 3rd Qu.:19
HMax . t36h Hax . t72 Hax . 56 Hax . :52
HA*s 11462 HA's 15244 HA's 116579 HA's 18473
HardDrugs SexEver SexAge SexNumPartnLife SexMumPartYear SameSex SexOrientation
No : 7287 No : 471 Min. -9 Min. H a Min. | No : 8857 Bisexual - 282
Yes : 1434 Yes : 8167 1st Qu.:1% 1st Qu.: 2 1st Qu.: 1 Yes @ 579 Heterosexual: 6534
NA*s:11652 HA*s:11655 Wedian :17 Median 5 Median : 1 NA's:11657 Homosexual : 111
Hean 17 Hean 15 Hean .| HA's 13446
3rd Qu.:19 3rd Qu.: 12 3rd Qu.: 1
Hax . :55 Hax. :2000 HMax . =160
HA*s 12157 HA*s 11761 HA*s 13253
WTINT2YR WTHEC2YR SDHUPSU SDHMUSTRA Pregnanthow
Min. : 3288 HMin. H 8  HMin. :1.88  HMin. 75 Yes : 125
1st Qu.: 11789 1st Qu.: 11622 1st Qu.:1.88 1st Qu.: 81 Ho : 2332
Median : 18913  Hedian : 18971 Median :2.80 Median : 88  Unknown: 156
Hean : 29987 Hean : 29987 Hean :1.59 Hean : 88 HA's 17688
3rd Qu.: 34054 3rd Qu.: 35312 3rd Qu.:2.808 3rd Qu.: 95
HMax . :228233 HMax. t222580 Hax. :3.60 Hax. =163



2. Expository data analytics (EDA) feat. Plotly

The other issue we can see within this data set is the prevalence of NA’s that varies across all our variables.

Let’'s determine how many NA’s by variable we are looking at and determine a course of action to handle
these events. We will see later on how H20.ai handles the treatment of NA's within observations, but for now
let’s run the below code to determine how many NA's by feature we are dealing with at this time:

## Count NA's by columns

na_count <- as.list(sapply(nhanesDF, function(y) sum(length(which(is.na(y))))))
na_count <- as.data.frame(na_count)

na_count <- as.data.frame(t(ha_count))

library(scales)

na_count$PCT <- na_count$V1 / nrow(nhanesDF)

na_count$PCT_desc <- percent(na_count$V1/ nrow(nhanesDF))

na_count <- na_count[order(-na_count$V1),]

na_count
> na_count
U1 PCT PCT_desc Alcohol12PlusYyr 9999 9.4923 49 2%
The code produces a data frame  neadeire 19819 09766 97.7%  Littlelnterest 9785 8.4822 48 2
. . i Depressed 9779 B8.4819
that contains all the variables 3;325;5,3?%? 1:?33 g:gizg 33:3% nggMunths 9555 B8.4789 47 .1%

. . = Ed ti 8535 B8.4206 42 1%
within the NHANES dataset and Egﬁ;ﬁg:gg;ﬁgld 1:322 g:ggg; gg:g MaritalStatus 8526 0.4201  42.0%
counts and calculates the Length 18000 0.8874  88.7%  UCUNL g Ter 0.amry 30w

; I PregnantHou 17686 8.8712  87.1% DaysPhysHIthBad 7862 0.387h  38.7%
percentage of NA’'s found within UrineFlow? 17596 0.8671  86.7%  ouo 8ol onb 5a86c 35 re
. - UrineVol?2 17585 B.8666 86.7% : )
cachvariable. The daia 1aMe 1S aetstaany 17105 e ooy Siocpiramgne  72e1 azsre a5y
H H BMICatUnder28yrs 16938 B8.8B3u7 83.5% R
sorted in descending order so that  geguiarmarsy - 16581 0.8171  81.7% et ive 7233 0.3564  35-6%
we can see the variables that AgeFirstMarij — 16579 0.8170  81.7%  BPSys1 6008 0.2061  20.6%
i . nBabies 16354 B.8859 80.6% BPDiail 60088 0.2961 20.6%
contain the highest percentage of  nPregnancies 16091 0.7929  79.3% BPSys2 5812 8.2864  28.6%
5 e . g Smokefge 15244 B.7512 75.1% BPDiaZ L8122 B8.2864 28.6%
NA’s found within that SpeCIfIC SmokeNow 150860 8.7421 7h.2% BPSys3 5788 0.2852 28.5%
ariable Testosterone 13467 9.6636 66.4% BPDia3 5788 0.2852  28.5%
vari : SexOrientation 13446 0.6626 66.3% g;tgﬁziﬂm 2323 g-;gg:} gg g%
AlcoholDay 133688 B8.6554 65.5% N -

) SexNumPartvear 13253 0.6531  65.3% g;g;g;ﬁg"l ;j‘ég g-gggﬂ 32 g%
Since 32 out of the 78 ot TR R R R
varaples (~41%0) Contain S0 o - sextee | T2 Sl S wimwar s o
more NA’s within each variable we ¢, csex 11657 0,574 B7.ay  CMLUHO 2ou0 81156 1%

1 SexEver 11655 B8.5743 57.4% Height 2958 8.1113 11.1%
will need to formulate a stratt_egy Ror dbrugs Hems oovne  eylwy  Medgnt 2258 0.1113  11.1%
on hOW we can gO forward W|th Alcohol¥ear 11462 B.5648 56.5% HHIncomeMid 2076 0.1023 10.2%

. TUHrsDay 11228 B8.5533 55.3% Poverty 1836 0.8985 0.8%
our EDA, clustering, and compHrsDay 11219 @.5529  55.3% weight 888 0.0438 P
. . . . . Diabet 833 A.8418 ho1%
predictive analytics. We will Raced 10597 8.5192 519 MomeRoons 145 0.0071  0.7%
perform the below using H20.ai Honeou B oo
. 1D a f.0888 a.a%
Surveytr A 0.A000 B.9%
. . . . Gend a f.0888 08.0%
1) Impute the missing values with structural single column based age 000800  0.0%
methods. H20.ai provides a function for doing this but is very DTINT2YR S 0 0008 oo
limited. See packages such as MICE and others that perform ononay” bt
much more detailed methods for data imputation. Once data SDHUSTRA 0 0.0008  0.0%
is imputed, we will run our models, still within H20.ai
framework.
2) H20.ai framework provides treatment of NA's within the
clustering and predictive analytical functions. We will us these
built capabilities and compare them to imputed value method.
10

Published by Colaberry Inc. © 2016



2. Expository data analytics (EDA) feat. Plotly

What is data imputation?

There are situations in data analytical projects where missing values are not relevant and therefore can be
ignored without any consequences to the analytical results. Then, there are those situations where ignoring
missing values is not possible if the analytical results are to be completed. The later is the situation with the
NHANES data set and analytics of diabetes. What is needed is a method which is called data imputation and
is defined next.

What is data imputation?
Definition from Wikipedia

“the process of replacing missing data with substituted values. When substituting for a data point, it is known
as "unit imputation"; when substituting for a component of a data point, it is known as "item imputation”.
Because missing data can create problems for analyzing data, imputation is seen as a way to avoid pitfalls
involved with listwise deletion of cases that have missing values. That is to say, when one or more values are
missing for a case, most statistical packages default to discarding any case that has a missing value, which
may introduce bias or affect the representativeness of the results. Imputation preserves all cases by
replacing missing data with an estimated value based on other available information. Once all missing values
have been imputed, the data set can then be analysed using standard techniques for complete data.”

Although the definition may sound simple, the considerations and execution of data imputation are very

complex. Consider these questions below given our data set of what know about the NHANES dataset to this

point:

1) What is the amount of data needed for data imputation? For example, how much is too much of NA’'s
within a column to perform data imputation?

2) What statistical method do you use to formulate the value (mean, median, etc.)?

3) What other values within the data set could be used to “profile” the row and determine the value?

As you can see we can continue our line of questioning to nail down our imputation process.
Fortunately for us, H20O.ai has a simple function that allows us imputed data in a paralyzed fashion on our

local machines, while considering these and other types of questions that we can provide within the function.
We will loop through all the numeric columns and perform a simple imputation on the missing values.

11

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Data preparations before imputation

Before we impute the data, let's make a few assumptions around our study of diabetes so that we don’t end
up imputing data when we really don’t even need to in the first place.

1) Consider only adults in our study ( > 17 years of age)
» Children skew our results when we consider BMI, age, and other factors

2) Impute only numerical data
* For this study we will only impute the numerical data (none of the factor variables) due to simplicity
(you can certainly impute factor types as well in h20.ai, you just need to recode them to numerical types)

3) Assume some threshold of NA's to be dropped form the study
+ Let’'s assume in this study that any field with greater than 75% NA's is just too many to draw any
meaningful imputation close to the “actual” (supposedly) values.

## Remove children from study
nhanesDF <- nhanesDF|[which(nhanesDF$Age > 17),]
nrow(nhanesDF)

> HFDW{HHEHESDF}
M1 123N

Now you should have 12,391 observation with this filter applied. Next we want to re-calculate and remove
anything over 75% NA's

## Count NA's by columns

na_count <- as.list(sapply(nhanesDF, function(y) sum(length(which(is.na(y))))))
na_count <- as.data.frame(na_count)

na_count <- as.data.frame(t(ha_count))

library(scales)

na_count$PCT <- na_count$V1 / nrow(nhanesDF)

na_count$PCT_desc <- percent(na_count$V1 / nrow(nhanesDF))
na_count$variable <- colnames(nhanesDF)

na_count <- na_count[order(-na_count$V1),]

na_count_50 <- na_count[which(na_count$PCT < .75),]

keep <- dimnames(na_count_50)[[1]]
nhanesDF_keep <- nhanesDF[,c(keep)]
ncol(nhanesDF_keep)

* ncol{nhanesDF_keep}
[1] 68

This reduces the number of variables to 68. Next filter to those fields that are of numerical type. We drop ID
as we do not want to impute that field.

nhanes_numDF <- nhanesDF_keep[, sapply(nhanesDF_keep, is.numeric)]
nhanes_numDF$ID <- NULL

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence

12



2. Expository data analytics (EDA) feat. Plotly

Data preparations before imputation (continued ...)

To summarize our data prep approach for data imputation, we filtered out children from our study, imputed on
the numerical values only, and kept the column where NA’'s where less than 75%. A summary chart of the
percentage of NA’s is seen below to visualize the prevalence of NA’'s by each column.

library(plotly)
library(ggplot2)
p <- plot_ly(na_count, x = variable, y = PCT, name = "NA Chart", type = "bar") %>%
layout(
title = "Percentage NA's By Each Column”,
xaxis = list(title =""),
margin = list(l = 60, r=60),
yaxis = list(title =""),
font = list(size=8)
)

p
e = =)
[ e P —

Percentage NA's By Each Column

X ]

0.6 I

04

0.z

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Creating an H20 instance in R

To execute the imputation, we will fire up an H20O instance. You will first need to install the package if you
haven’t done so already (see introduction).

To start an H20 instance execute the below R code:

## Start H20
library(h20)
conn <- h2o.init(max_mem_size = '5q’)

> conn <- hZo.init{max_mem_size = "5g9°}

H20 is not running yet, starting it now...

Hote: In case of errors look at the following log files:
C:vo L\ started from r.out
C=x 0\ started_from_r.err

java version "1.8.8 51"

Java{TH) SE Runtime Environment {build 1.8.8 51-b14)

Java HotSpot{TH) 64-Bit Server UM (build 25.51-b83, mixed mode)
-Successfully connected to http:/yf

R is connected to the H20 clustey:

H20 cluster uptime: 4 seconds 398 milliseconds

H20 cluster wversion: 3.6.8.8

H20 cluster name: HZ20_started_from_R_ <con1puternarne>
H20 cluster total nodes: 1

HZ20 cluster total memory: 4.44 GB

H20 cluster total cores: L

H20 cluster allowed cores: @

H20 cluster healthy: TRUE

Hote: As started, H20 is limited to the CRAH default of 2 CPUs.
Shut down and restart H20 as shown below to use all your CPUs.
¥ hZo.shutdown()
*» h2o.init{nthreads = -1)

Yours will look different than what mine is showing depending on your system and resources on your
machine. The key information you want to notice is the total nodes, memory, and cores. This will give you an
indication of the parameters h2o will use to optimize in-memory computations on your machine.

14

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Data imputation in H20+R

We will perform a simple, single column imputation on the medians of each variable. The subject of
imputation is a whole (and interesting) field of work that expands greatly into more effective and detail
methods of imputation. To get further details on these methods of data imputation, suggest reviewing Stef
van Buuren and Karin Groothuis-Oudshoorn work in the below volume found within the “Journal of Statistical
Software”.

Multivariate Imputation by Chained Equations in R
http://www.jstatsoft.org/article/view/v045i03/v45i03.pdf
R package in CRAN is “mice”

We will be using the h2o.imput() wrapped within a standard R loop to perform the data imputation on each
numeric column that we have partition into its own data frame.

H#i

## Data Imputation

H#i

nhanes_numDF_hex <- as.h2o(nhanes_numDF)
nhanes_numDF_Imp_hex <- nhanes_numDF_hex

for (i in 1:ncol(nhanes_numDF_Imp_hex)) {
nhanes_numDF_Imp_hex[,i] <- h2o.impute(nhanes_numDF_hex,
colnames(nhanes_numDF_hex([,i]),
method = "median", combine_method="l0")[,i]

}

summary(nhanes_numDF_Imp_hex)

Reviewing the h20 package reference we see the below arguments the impute function takes to perform the
data imputation.

Arguments

data The dataset containing the column to impute.

column The column to impute.

method “mean” replaces NAs with the column mean; "median” replaces MAs with the column median; "mode” replaces with the

most common factor (for factor columns only);

combine method If method is "median”, then choose how to combine quantiles on even sample sizes. This parameter is ignored in all other

cases.
by group by columns
inplace Perform the imputation inplace or make a copy. Default is to perform the imputation in place.

Once you run the code above, H20 will perform all the imputation (very fast) and stored the results we have
named “nhanes_numDF_Imp_hex”. Next we will perform our detail exploratory data analysis (EDA) on the
original data as well imputed to insure structural distribution has been maintained.

15

Published by Colaberry Inc. © 2016


http://www.jstatsoft.org/article/view/v045i03/v45i03.pdf

2. Expository data analytics (EDA) feat. Plotly

Exploratory data analysis review

To perform our analysis, we will use plotly & ggplot2 to visualize our results along with some statistics that tell
us facts regarding distribution, spread, means, correlation, variance. If you haven'’t installed plotly and
ggplot2 in R please refer to the introduction section, then come back here to proceed. These are important
basic facts to consider when approaching any data set prior to further analysis.

Proportions and summary tables

Let’s start by taking a quick look at the proportion of diabetes by a set of variables. We will just look at a
couple to get the general idea.

Let’s run a simple proportion tables on diabetes.

tbl <- table(nhanesDF$Diabetes)
prop.table(tbl)

Ho Yes
B.86 B.14

As we can see that those with diabetes are 14% of our observations vs. those without are 86%.
Let’s break this down by the categorical variables gender, race, and education.

Let’s run a simple proportion tables on diabetes. Diabetes

Gender Ho Yes
tbl <- with(nhanesDF, table(Gender, Diabetes)) : female B.87 0.13

prop.table(tbl, 1) male @.86 O.14
Diabetes

tbl <- with(nhanesDF, table(Racel, Diabetes)) Ha;i;ck :g ﬂlfﬁg

.
prop.table(tbl, 1) Hispanic 8.86 8.14
Hexican 8.86 B8.14
.
.

v

WUhite 89 A.11
0Other 88 a.12
Diabetes
Education Ho Yes
tbl <- with(nhanesDF, table(Education, Diabetes)) 8th Grade 0.762 0.238

rop.table(tbl. 1 9 - 11th Grade 0.831 0.169
prop.table(tbl, 1) High School 8.868 08.132

S5ome College 8.878 B8.138
College Grad 8.981 B8.899

v

The proportions seem to hold about the same across race and gender. However, the proportion of diabetes
found in those with an 8" grade education only (with out further progression) seem to have higher prevalence
of diabetes.

Let's now look at some of the distributions by numerical values grouped by diabetes.

16

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Box plots for distribution analysis

Before diving into the NHANES box plot data, lets do a brief review of box plots in general. Box plot are one
of my go to tools for studying variation within continuous data. It allows me to see the shape, central
tendency, and variations between and within central limits. Mastering the interpretation of these charts can
be very valuable in your daily consumption of statistical information. Below is a simply diagram that shows
the basic layout. More information on these charts can be found at: https://en.wikipedia.org/wiki/Box_plot

This line This line This line
This whisker shaws the shows the shows the This whisker
shows the lower quartile  median upper shows the
lowest value \ quartile hightest value
\ ¥ L /
L 1 I 1 L% \l 1 ] /.* I 1 I
The width of the box
shows the
interquartile range

Now let’s look at a few continuous values and see how they look separated by diabetes. Well, perform one
on each by the imputed data and none imputed data because we want to ensure structurally, there are not
significant changes due to imputation.

Let’s start with total cholesterol (I'm just randomly selecting these of the key variable that intuitively are
associated with diabetes).

## TotChol
plot_ly(nhanes_numDF, x = TotChol, color = Diabetes, type = "box")%>%
layout(title = "Box Whisker Total Cholesterol”, margin = list(l = 65))
plot_ly(nhanes_numDF_Imp, x = TotChol, color = Diabetes, type = "box")%>%
layout(title = "Box Whisker Total Cholesterol Imputed”,margin = list(l = 65))
vt s 1=

Box Whisker Total Cholesterol Box Whisker Total Cholesterol Imputed

5 B ves
(S @ o

[
TotChol TotChol

As you can see, not much structural change in the data due to imputation. In fact, those with diabetes and
those without seem to have about the same look and shape of the distribution of cholesterol. 17

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence


https://en.wikipedia.org/wiki/Box_plot

2. Expository data analytics (EDA) feat. Plotly

Box plots for distribution analysis (continued ...)

Let’s now look at two additional variables, age and weight. From the graph below we see there isn't much
structural difference between the imputed data and the actual values without NA's so we conclude that it’'s ok
to proceed with the imputed data. Notice also the how much more the age median and bounds are for those
with diabetes and those without. Also, notice the difference in weight between diabetes and no diabetes.

## Weight

plot_ly(nhanes_numDF, x = Weight, color = Diabetes, type = "box")%>%
layout( title = "Box Whisker Weight",margin = list(l = 65))

plot_ly(nhanes_numDF_Imp, x = Weight, color = Diabetes, type = "box")%>%
layout(title = "Box Whisker Weight Imputed”,margin = list(l = 65))

## Age

plot_ly(nhanes_numDF, x = Age, color = Diabetes, type = "box")%>%
layout(title = "Box Whisker Age",margin = list(l = 65))

plot_ly(nhanes_numDF_Imp, x = Age, color = Diabetes, type = "box")%>%
layout(title = "Box Whisker Age Imputed”,margin = list(l = 65))

Baox Whisker Welght - Box Whisker Weight Imputed

L
i
=m

m I l ‘ - : m I I } |

250 50 100 150 200
Weight

Box Whisker Age Imputed

B8

£
B8
T

18

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Dot plot of variables and diabetes (non-imputed data)

Now, we would like to understand what is the average variance from the central tendency among
observations that have diabetes and do not have diabetes by each variable. A good chart for this is a dot plot
where we will take each variables, and find the average for diabetes and non-diabetes observations, then
index them against the overall variable average. Each group, diabetes vs. no diabetes, will be represented by
a colored dot. This will tell use how much or less each group is compared to the overall average.

We will first run on the non-imputed data then run the same on the imputed values.

nhanes_numDF$Diabetes <- nhanesDF$Diabetes
nhanes_numDF$Study <- "NHANES"
nhanes_numDF$ID <- NULL

aggDiabetes <-aggregate(nhanes_numDF[,1:40], by=list(nhanes_numDF$Diabetes), FUN=mean,
na.rm=TRUE)

aggNHANES <- aggregate(nhanes_numDF[,1:40], by=list(hhanes_numDF$Study), FUN=mean,
na.rm=TRUE)

library(reshape)

DiabetesMetrics <- melt(aggDiabetes, id=c("Group.1"))

DiabetesMetrics <- cast(DiabetesMetrics, variable ~ Group.1)
colnames(DiabetesMetrics) <- c("Metric", "No.Diabetes", "Yes.Diabetes")

nhanesMetrics <- melt(aggNHANES, id=c("Group.1"))
colnames(nhanesMetrics) <- c("Study"”, "Metric", "Overall")
nhanesMetrics$Study <- NULL

nhanesMetrics_Final <- merge(DiabetesMetrics, nhanesMetrics, by="Metric")
nhanesMetrics_Final$No.Diabetes.Index <- 0
nhanesMetrics_Final$Yes.Diabetes.Index <- 0

for(i in 1:nrow(nhanesMetrics_Final)){
nhanesMetrics_Final[i,5] <- nhanesMetrics_Final[i,2]/nhanesMetrics_Final[i,4]
nhanesMetrics_Final[i,6] <- nhanesMetrics_Final[i,3]/nhanesMetrics_Final[i,4]

}

p <- plot_ly(nhanesMetrics_Final, x = No.Diabetes.Index, y = Metric, name = "No.Diabetes",
mode = "markers", marker = list(color = "pink", size=8)) %>%
add_trace(x = Yes.Diabetes.Index, name = "Yes.Diabetes", marker = list(color = "blue", size=8)) %>%
layout(
title = "Diabetes Metric Index Scale",
xaxis = list(title = "),
margin = list(l = 60, r=60),
yaxis = list(title = "),
font = list(size=8)
)
p

19

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

Dot plot of variables and diabetes (non-imputed data) (continued...)

i ViewerZoom

i

o

Diabetes Metric Index Scale Gl &4+ BaXx aa= M

®  NioDisbates

@ vesDisbetes

From this chart we can see all the numeric variables on the right, the blue dots are those with diabetes mean
for that variable, and the green colored dot are those with out diabetes mean for each of the variables.

The scales are read as 1 is the overall mean and any value above or below the overall mean. So for
example, we see that age for the green (no diabetes) is at ~.96 which means 4% below average, however
the blue dot (with diabetes) indicates they are 28% higher in age than the average (value 1.28).

From this chart then we see that those with diabetes have higher/lower, compared to the total average, the

below variables:

* Weight (+10%)

« Sex Number of Praters (+22%)

* Number of Pregnancies (+22%)

* Number of Babies (+23%)

» Days of Physical Bad Health (+70%)

+ Days with Mentally Bad Health (+17%)

» All Systolic Blood Pressure Readings (+6%)
« BMI (+12%)

Alcohol Days (-13%)

Alcohol Years (-44%)

Testosterone (-14%)

All Diastolic Blood Pressure Readings (-3%)
Urine Volume Readings (-5%)

20

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



2. Expository data analytics (EDA) feat. Plotly

EDA conclusions

From this chart we can see all the numeric variables on the right, the blue dots are those with diabetes mean
for that variable, and the green colored dot are those with out diabetes mean for each of the variables.

The scales are read as 1 is the overall mean and any value above or below the overall mean. So for
example, we see that age for the green (no diabetes) is at ~.96 which means 4% below average, however
the blue dot (with diabetes) indicates they are 28% higher in age than the average (value 1.28).

From this chart then we see that those with diabetes have higher/lower, compared to the total average, the
below variables:

21

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



3. Clustering using H20+R

Clustering NHANES - diabetes analysis

H20O provides kmeans functions for clustering observations into homogeneous groups. The nice feature
within H20O is it's ability to handle missing values, so we will run our clustering on both the imputed data set
we created in the previous section, and run the clustering on the original numerical fields that include missing
values. Then we will compare the results.

From an analytical goals standpoint, what we hope to achieve in this effort is to identify groups of people who
are more or less prone to contracting diabetes based solely on the numerical observations.

Here is how we will tackle the problem:

1) Overview what clustering is and how kmeans performs these capabilities very briefly (this is not a tutorial
to clustering methods. I'll provide links if you need additional references and context)

2) Determine the appropriate number of clusters (even so, still more of an art than a science)

3) Run the kmeans function on both the imputed and NA numerical data sets

4) For each data set, use multidimensional scaling methods to determine separations of each cluster group

5) Analyze the features that make up each cluster to determine the driving forces behind each group

6) Add the cluster group identifiers back to each original data set for predictive analytics we will perform in
later sections

Brief overview of clustering analysis

We want to cluster observations into groups to help execute different activities on each group for better
maximization of objectives. For example, in our case we want to identify groups with certain characteristics
so that when we identify how many within each group has higher / lower observations of diabetes we can
perform the needed activates of preventive care on a subset of individuals verses the whole enchilada.

We will use the popular kmeans method to perform our clustering activities within H20. Kmeans patrtitions
observations based on what is called a centroid, which is a calculation of the groups center. It set a K points
as initial centroids, then loops through multiple iterations to find the optimal center point for each group. This
type of process in machine learning and statistics is called an unsupervised learning algorithm because we
never tell the algorithm a training, or testing data set to learn and tune. It simply attempts to find an optimal
point by reduction of the sum of square error for all the observations based on a distance metric (Euclidean,
Manhattan, etc.).
Suppose we had the data to the
ce L moe left plotted in a chart. We can

R A c use the kmeans method to find

oo o the center points and identify a

b IR unique cluster identifier to each
5 . e group that partitions each
observation in a homogeneous
cluster group. The 4 is the
center point the kmeans method
assigned to each group.

10

&

05
o o
o
o
o

-0

° o
@
w ° °
- %
o °
o

T T T
-1 0 1 2

Links for more information on kmeans:

https://en.Wikipedia.orqlwiki/K-meéns clustering
http://www.statmethods.net/advstats/cluster.html
https://cran.r-project.org/web/packages/HSAUR/vignettes/Ch cluster analysis.pdf 22

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



https://en.wikipedia.org/wiki/K-means_clustering
http://www.statmethods.net/advstats/cluster.html
https://cran.r-project.org/web/packages/HSAUR/vignettes/Ch_cluster_analysis.pdf

3. Clustering using H20+R

Determine the appropriate number of clusters

Although the aged old question has always been around how many clusters should one use tends to be
found out more through trail and error in most cases. We will perform H20 kmeans through an iterative loop
to determine the appropriate number of clusters.

The process to loop through multiple K clusters and extracting the needed sum of square error statistics by
each K can be computational draining. Luckily H20 in-memory optimization of the kmeans functions allows
us to process this much faster verses running it on local versions of kmeans.

The below R code will produce a data frame and supportive plotly graphic to help us determine the number
of clusters we should use in this example (this took my h2o instance about 13 minutes to perform 100 loops):

## Determine k

dfK <- data.frame(No_Cluster=numeric(),
TotWithinSS=numeric(),
BetweenSS=numeric(),
TotSS=numeric(),
stringsAsFactors=FALSE)

k_iterations = 100
tl <- Sys.time()
for (i in 2:k_iterations){
kmeans_imp_hex <- h2o.kmeans(training_frame = nhanes_numDF_Imp_hex,
k =i, max_iterations = 1000, standardize = T)
dfK[i-1,1] <- i
dfK[i-1,2] <- getTotWithinSS(kmeans_imp_hex)
dfK[i-1,3] <- getTotWithinSS(kmeans_imp_hex)
dfK[i-1,4] <- getTotWithinSS(kmeans_imp_hex)
}
t2 <- Sys.time()
t2-11

> t2 <- Sys.time()
> t2-t1
Time difference of 13.285% mins

The three metric for sum of square error is defined below:

« TotWithinSS: sum of squared distances within each cluster mean
+ BetweenSS: sum of squared distances of each cluster mean
» TotSS: sum of squared distances of each data point to the global sample mean

The key benefit of using H20 in this exercise is its ability to cycle through quickly the kmeans function. This

process took my computer with H20 only 13 min, verses without H20O would have taken 20 hours. That is
very impressive performance considering this is all in-memory processing.

23

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



3. Clustering using H20+R

Determine the appropriate number of clusters (continued...)

The below code charts the three metrics together for a visual presentation by K and the sum of squared
distances.

library(reshape)
dfK_melt <- melt(dfK, id=c("No_Cluster"))

library(ggplot2)
library(plotly)

p <- ggplot(data = dfK_melt, aes(x = No_Cluster, y = value)) +
geom_point(aes(text = paste("SS:", variable)), size = 4) +
geom_smooth(aes(colour = variable, fill = variable)) + facet_wrap(~ variable)

(99 <- ggplotly(p))

What we are looking for is the “elbow” of the curve, and therefore will determine the number of clusters we
will use. Reason being is that we want to select a K where the sum of squared distances drop is significant
but beyond the “elbow” there really isn’t much improvement. We can see in our case we have our “elbow”
around K = 40, and therefore that's what we will use. However, it can be argued that due to the gradual slope
of the line after 40 you might be justified in your thinking to keep the K higher. Again, this process of selecting
K is more art than science so you need to pick which works best for the context of your project goals.

{ﬂWewerZoom '3 L — -l < A N
GR Q4+ QR4 aE

TotWithinSS BetweenSS TotSS

450k~

400k~

value

350k~

‘ 300k-

250k~

24

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



3. Clustering using H20+R

Run kmeans and review cluster sizes

We will not run the version of H20 kmeans with K=40, and review each cluster size.

## Run Kmeans
kmeans_hex <- h2o.kmeans(training_frame = nhanes_numDF_hex,
k = 40, max_iterations = 1000, standardize = T)
kmeans_imp_hex <- h2o.kmeans(training_frame = nhanes_numDF_Imp_hex,
k = 40, max_iterations = 1000, standardize = T)
kmeans_size <- data.frame(ClusterSizes = getClusterSizes(kmeans_hex), clusterID = seq(1:40))
kmeans_imp_size <- data.frame(ClusterSizes = getClusterSizes(kmeans_imp_hex), clusterID = seq(1:40))

library(plotly)
p <- plot_lIy(
data = kmeans_size,
x = clusterID,
y = ClusterSizes,
name = "ClusterSizes non_imp",
type = "bar"
)%>% layout(title = "Cluster Sizes for the Non-Imputed Data Set", showlegend = FALSE)

p
p <- plot_lIy(
data = kmeans_imp_size,
X = clusterID,
y = ClusterSizes,
name = "ClusterSizes non_imp",
type = "bar"
)%>% layout(title = "Cluster Sizes for the Imputed Data Set", showlegend = FALSE)
p

We can see that we have some cluster with very few observation. Depending on your project, you can
determine the best course of action to deal with these cluster with lower levels of observations, but in our
case we will leave them to maintain structure (if we got more data to scale for example).

[ T ) [pee e S e )
Cluster Sizes for the Non-Imputed Data Set Cluster Sizes for the Imputed Data Set
-
-
.
-
-
.
e e
-
i i
- .
-
-
-
. .
cluster cust

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



3. Clustering using H20+R

Clustering multidimensional scaling

Next, we wish to see the separation between each cluster considering all the variable centers. To accomplish
this, we will use multidimensional scaling (MDS) of the variables combining into a single metric by cluster.
The reason for this is that each variable centers are on different scales, and there for will need to be
normalized and fitted to a single metric (combining all variable scaled metrics) to determine distance of each
cluster.

Notice we are running one dataset that has been imputed and the other has not, which will show how H20
kmeans handles missing values (if you were to run kmeans using R, it would not like the NA's). This is a key
advantage of using H20 clustering capabilities.

## Get centers
centers_hex <- getCenters(kmeans_hex)
centers_imp_hex <- getCenters(kmeans_imp_hex)

## calc euclidean distance of centers
dist_euclidean <- dist(centers_hex, method = 'euclidean’) # Euclidean Distances between the centers
dist_euclidean_imp <- dist(centers_imp_hex, method = 'euclidean’) # Euclidean Distances between the centers

## scale distance
fit <- cmdscale(dist_euclidean, eig = TRUE, k = 2) # k is the number of dimensions
fit_imp <- cmdscale(dist_euclidean_imp, eig = TRUE, k = 2) # k is the number of dimensions

# Plot the Clusters in 2D Space
x <- fit$points[ , 1]
y <-fit$points[ , 2]

x_imp <- fit_imp$points[ , 1]
y_imp <- fit_imp$points[, 2]

par(mfrow=c(1,2))

plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",
main = "NHANES Clusters - MDS", type ='n’, las = 1)

text(x, y, labels = row.names(centers_hex), cex = .7)

plot(x_imp, y_imp, xlab = "Coordinate 1", ylab = "Coordinate 2",

main = "NHANES Imputed Clusters - MDS", type ='n’, las = 1)
text(x_imp, y_imp, labels = row.names(centers_hex), cex = .7)

What we did in the above was used the H20 function getCenters() for each data set, then calculated the
distance of each using Euclidean distance (you could use others here), scaled each distance by 2
dimensions, then plot the results of each.

26

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



3. Clustering using H20+R

Clustering multidimensional scaling (continued...)

The graph below is the result of our MDS. Don’t worry about interpreting the x and y axis (there is no
meaning other than for plotting). What this tells us which clusters are different from each other. For example,
we can see that on the “NHANES Clusters — MDS” graph that cluster 17 and 26 are very close together. This
implies these groups are common to each other with some difference. On the other side, looking again at
“‘“NHANES Clusters — MDS” graph, cluster 39 and 4 are very much different groups. We will need to make
note of these cluster separations as we attempt to interpret results later.

Another caution is that the cluster number between each graph are not the same, so you cannot say that

cluster 4 on the “NHANES Clusters — MDS” graph is the same as cluster 4 on the “NHANES Imputed
Clusters — MDS” graph.

Our conclusions in MDS is that we see similar separations and concertation of cluster forms between each
data set, which tells us that both clustered data set seem do about the same job (despite having missing
values). Although we are not going to do this here, you could go through each observations and determine
which cluster group was assign by each data set and calculate a similarity index to show how similar each
cluster are to each other (email me and | can share this with you).

NHANES Clusters - MDS NHANES Imputed Clusters - MDS
39 26 16
a7
20000 — 30
40000 —
. 102
b 151 s
20000 0 yro2 e
16 o 12
o™ o™ 34 4
o 20 30 o
g 8 13 g 38
5 7, 2 = .
[=] 15 [=] 25
8 4% 8
182 27
31535?3;;3 11 -20000 —
24
2 28 23
1
3
2
-20000 — T 2 2
-40000 —
4 35
T T T T T T T
0 50000 100000 150000 0e+00 S5e+04 1e+05
Coordinate 1 Coordinate 1

27

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



3. Clustering using H20+R

Clustering and diabetes

Now we have our clusters, we want to find the proportions of diabetes within each group. The code below
shows graphically the number of diabetes individuals vs. those that do not by cluster.

# Combine the incidents with their Clusters

clusters_hex <- h2o.predict(kmeans_hex, nhanes_numDF_hex)
nhanes_numDF_clust_result_hex <- h2o.cbind(nhanes_numDF_hex,clusters_hex)
summary(nhanes_numDF_clust_result_hex)

clusters_imp_hex <- h2o.predict(kmeans_imp_hex, nhanes_numDF_hex)
nhanes_numDF_clust_imp_result_hex <-
h2o.chind(clusters_imp_hex,nhanes_numDF_Imp_hex,nhanes_numDF_hex$Diabetes)
summary(nhanes_numDF_clust_imp_result_hex)

library(plotly)

library(ggplot2)
nhanes_numDF_clust_result <- as.data.frame(nhanes_numDF_clust_result_hex)

colnames(nhanes_numDF_clust_result)[40] <- "clusterID"
nhanes_numDF_clust_imp_result <- as.data.frame(nhanes_numDF_clust_imp_result_hex)
colnames(nhanes_numDF_clust_imp_result)[1] <- "clusterID"

## set clusterID as factor type (not numeric)
nhanes_numDF_clust_result$clusterID <- as.factor(nhanes_numDF_clust_result$clusterID)
nhanes_numDF _clust_imp_result$clusterID <- as.factor(nhanes_numDF_clust_imp_result$clusterID)

## Add diabetes
nhanes_numDF_clust_result$Diabetes <- nhanesDF_keep$Diabetes
nhanes_numDF_clust_imp_result$Diabetes <- nhanesDF_keep$Diabetes

## Percentage of diabetes per cluster
library(dplyr)
nhanes_numDF_clust_imp_result["Count"] <-1
df2 <- aggregate(nhanes_numDF_clust_imp_result[c("Count")],
by=list(Diabetes=nhanes_numDF_clust_imp_result$Diabetes,
clusterID=nhanes_numDF_clust_imp_result$clusterID), FUN=sum, na.rm=TRUE)

p <- plot_ly(df2, x = clusterID, y = Count, type = "bar", color = Diabetes)
layout(p, barmode = "stack")

[veetoon . ——— ———— [oiow| i
I From the graph we see the count of observations by

cluster of those with and without diabetes. For

- example, one of the bigger clusters, cluster 36,
shows very little diabetes based on the total number
of observations, verses cluster 33 which shows very
e high amounts of observation of diabetes.

| No
W Yes

g It is difficult to gauge exactly the proportion of
diabetes within each cluster, so let’s build another
graph of the percentage of diabetes within each
cluster.

0 28

0 s 10 15 20 25 30 35
dusterD

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence




3. Clustering using H20+R

Clustering and diabetes (continued...)

The code below is similar to the previous but shows as percentage vs. counts.

df3 <- cast(df2, clusterID~Diabetes)

df3[is.na(df3)] <- 0

df3$NOPCT <- df3$No / (df3$No+df3$Yes)

df3$YesPCT <- 1-df3$NoPCT

df3$No <- NULL

df3$Yes <- NULL

df4 <- melt(df3, id=c("clusterID"))

p <- plot_ly(df4, x = clusterID, y = value, type = "bar", color = Diabetes)
layout(p, barmode = "stack")

= This graph is much more easily represented

: == | for our study to determine the proportion of

f diabetes found within each cluster. Going back
to cluster 33, we see that ~35% of the
observations are those with diabetes.

The key question now is what makes each
cluster different? When we apply the diabetes
proportions we might determine groups of
observations and features that are more
commonly associated with diabetes.

value

o 5 10 i5 20 25 30 35
dusterlD

=T o === |

iz
-m
i3

100 04

0.z

20
dustero dusterlD

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence

29



3. Clustering using H20+R

Clustering summary

In summary, we have used the capabilities of R and H20 to perform clustering by:

1) Briefly reviewing the overall concept of clustering and how H20 capabilities enhances the process of
computational grouping observations into homogeneous groups.

2) We then looped through 100 clustering models to then find the appropriate number of cluster, k, by
selecting the k where MSE is reduced enough and not really significantly declining after that point. This
emphasized the point that using H20O is advantageous when computational intensity raises for looping
through multiple interactions of high dimensional data.

3) Next we used multidimensional scaling of the cluster centers by each feature to determine distances from
each cluster which indicates just how similar and different each cluster are from one another,

4) Finally, we then added the clustered observations back into the original data set and determined the
prevalence of diabetes found within each cluster.

Although its nice that we have these clusters and know what proportions of diabetes are found in each, we
need to asses what are the main features that contribute to having diabetes within each of these groups and
predicting the likelihood of the diabetes event occurring in each.

We will explore that aspect next using H20 predictive capabilities.

30

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Predictive models in H20

As stated previously, one of our objectives in our analysis is to assess the predictive features that contribute
to diabetes. We have built cluster groups, and now want to use the fantastic predictive capabilities H20 has
built within R to accomplish this activity.

We will build four types of models used to conduct a predictive model on our target variable diabetes. All four
fall within the classification type models as we are attempting to “guess” the class of those with diabetes and
those that do not have diabetes.

The four models within H20O we will deploy on our cluster groups are listed below:

1) Distributed Random Forest:
* An ensemble decision tree method
» Using predictions from multiple decision trees, the model combines each resulting prediction
+ Each tree gets a vote used in the bagging method
* ltis distributed in terms of the parallelized decision tree process across each H20 clusters

2) Gradient Boosting Machine:
+ Can be either ensemble of either regression or classification tree models, we will use classification
tree GBM
* Is an expansion of the “Multi additive regression tree” of MART combines two methods gradient
optimization of loss matrix and boosting for “weak” classifiers producing a committee based
approach
* Uses distributed trees as well

3) General Linear Model:
* Ageneral linear regression method tool kit for conducting linear models
+ Since our target is binary (diabetes found, not found), we will use a logistic regression approach
» Uses likelihood optimization in fitting the model parameters

4) Deep Learning:

« Similar to Neural Networks, deep learner are feedforward Neural Networks with many layers and
call fall into other categories such as Deep Belief Network (DBN), Deep Neural Network (DNN),
etc.

* Weights are adapted to minimize the error on the labeled training data

H20 has excellent resources you can read more about these and other models accessing this link:
http://www.h20.ai/resources/

No free lunch approach to modeling means there isn’t just one model that does everything you need, so
therefore we will run through all four and compare them on efficacy, accuracy, and parameter setting.

We will supervise all four models as well, setting up training, testing, and a hold out partitioning of each
clusters data.

31

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence


http://www.h2o.ai/resources/

4. Predicting diabetes using H20+R

Running Distributed Random Forest by cluster

We will use Distributed Random Forest (DRF) within H20 to predict the class of diabetes by features for
each cluster group. Our goal is to extract key features by cluster that contributes to the presence of diabetes.
As mentioned before, DRF is an ensemble decision tree method and therefore we the number of trees to use
within our model.

One thing we need to be up front and honest to ourselves is that this is a class imbalanced problem
(mentioned previously) which will cause us problems in both our assessment of parameter quality and
predictive accuracy measures. Let’s dive into the process and study what this means.

First let’s get our data set ready for modeling by only running the model on cluster with greater than 100
observations:

library(dplyr)

nhanes_DF_imp_sup <- nhanes_numDF_clust_imp_result

library(sqldf)

cluster_keep <- sqgldf("select sum(count) as clust_cnt, clusterID from nhanes_DF_imp_sup group by count, clusterID")
cluster_keep <- cluster_keep[which(cluster_keep$clust_cnt > 100),]

nhanes_DF_imp_sup_keep <- sqldf("select * from nhanes_DF_imp_sup where clusterID in (select clusterID from
cluster_keep)")

nhanes_DF_imp_sup_keep$DiabetesO <- NULL

nhanes_DF_imp_sup_keep$ID <- NULL

nhanes_DF_imp_sup_keep$Count <- NULL

nhanes_DF_imp_sup_hex <- as.h2o(nhanes_DF_imp_sup_keep)

summary(nhanes_DF_imp_sup_hex)

The code above results in a data frame for our supervised (sup) learning models where we have only considered clusters
with > 100 observations. We also need a table of all the features listed, so that's what nhanes_DF_imp_sup_keep_var data
frame holds.

Next we create a blank data frame where we insert each model important variables along with key validation statistics by
each cluster.

model_results_drf <- data.frame(No_Cluster=character(),
variable_importances=character(),
relative_importance=numeric(),
scaled_importance=numeric(),
percentage=numeric(),
Error_Diabetes=numeric(),
stringsAsFactors=FALSE)

32

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Distributed Random Forest by cluster (continued ...)

We will now loop through each cluster (the ones we kept) and produce a random forest model on each
cluster, extracting each important feature and saving it to our blank data frame. We also are interested in the
confusion matrix error rates on “Yes” to diabetes. Typically, in class imbalance problems, the models produce
great results on the training and test data set on the prevalent condition (in our case those without diabetes)
but suffer on the end of predicting the lower frequency event (those with diabetes). Our goal is to get the
error rate as low as possible on the “Yes” to diabetes, even if that means increasing error on “No”. The
reason is that it's more costly in our case to miss a diabetes diagnoses, vs. miss-diagnosing someone
without diabetes, but the models claims they do. This is a common dilemma in healthcare analytics and
researchers must always weigh the cost of each study (patient outcomes focused).

t1 <- Sys.time()
for (i in 1:nrow(cluster_keep)H
clust_ID <- as.character(cluster_keepli,2])
clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusterID==clust_ID,]
clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))
r <- h2o.runif(clustDF)
train <- clustDF[r < 0.6,]
test <- clustDF[(r >=0.6) & (r < 0.9),]
hold <- clustDF[r>=0.9,]

response <- "Diabetes"
predictors <- setdiff(names(clustDF), response)

try(drf <- h2o.randomForest(x = predictors,
y = response,
training_frame = train,
validation_frame = test,
ntrees =1000,
balance_classes =T), silent=T)

drf_var_variable_importances <- as.data.frame(drf@model$variable_importances)
perf_drf <- h2o.performance(drf, clustDF)
drf_var_variable_importances$Error_Diabetes <- h20.confusionMatrix(perf_drf)[2,3]
drf_var_variable_importances$No_Cluster <- clust_ID

model_results_drf <- rbind(model_results_drf,drf_var_variable_importances)
}
t2 <- Sys.time()
t2-t1

Let’s review the parameters we set here. First, as in all the models we will run, we set the target and predictors, test, and
train parameters. Next, ntrees allow us to set the number of trees to cycle through. Remember, RF trees get a vote and
each will cycle through for the best result based on reduction of MSE. | selected 1,000 trees which works well with H2O’s
paralyzed processing. The balance classes = True lets the DRF know it needs to sample in a certain why due to class
imbalance. Finally, We loop through all this and predict based on the Hold data set and grab the diabetes = Yes error rate.

33

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Distributed Random Forest by cluster (continued ...)

The output of the previous exercise produced a data frame that contains all the variables we have
considered and appended the variable importance, error rate on the hold out data fro diabetes = “Yes”, and
other statistics by each cluster. We can now take that data frame, filter it down to only include those feature
that have high levels of importance as it relates to predicting diabetes for each cluster. | selected 70% and
above variable importance just to keep thing simple for graphing the results. Run the code below and lets
review the out puts.

model_results_drf_filtered <- sqldf("select * from model_results_drf where scaled_importance > .7")
plot_ly(model_results_drf_filtered, x = percentage, y = variable,
mode = "markers", color = No_Cluster) %>%
layout( title = "DRF Variable Importance by Cluster",
xaxis = list(title = "Percentage Importance"),
margin = list(l = 120))

plot_ly(model_results_drf_filtered, x = percentage, y = variable, z=Error_Diabetes,
text = paste("Clusters: ", No_Cluster),
type="scatter3d", mode="markers", color = No_Cluster)%>%
layout(title = "DRF Variable Importance by Cluster (Imporatnace & Error Rate)",
xaxis = list(title = "Percentage Importance"),
margin = list(l = 20))

T viewe: Toom IS [ ————— S ——— T—— T o | [ =)
DRF Variable Importance by Cluster By &4+ Bax aal M

.o .
PNUEHRUBUBNREEG

Error_Diabetes
03

0.1 02 03 04 05 06 07 08
Percentage Importance

The first graph produces a graph that shows the variables and importance by each cluster. We can see age
Is a popular feature among the clusters for diabetes which tells us that this is a key feature probably all
groups. It appears Cluster 27 puts a lot of focus of importance on BMI (weight and height ratio), which far
exceeds the rest of the clusters. If you filter this outlier out by select the rest of the data points, you can see a
re-scaled version that easier to read.

The second chart includes the 3" dimension of diabetes = “Yes” error rate. Since this is 3 dimensional space,
you can see variable importance with high levels of importance and low levels of error rate by cluster. From
this graph we are able to see for example cluster 5 shows low error rate and high level importance for “Age
of 1st Baby”.

34

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Gradient Boosting Machine by cluster

As mentioned in the section introduction, Gradient Boosting Machine (GBM) can be used in multiple
predictive fashions such as regression or tree based classification. We are interested in the later as we are
attempting to classify individuals as either likely to have or contract diabetes or not.

The outputs will be identical to that of what we did for DRF, but there are key difference in the parameters
used and the treatment GBM runs through vs. DRF.

First we create again a blank data frame where we will store all our model performance metrics.

model_results_gbm <- data.frame(No_Cluster=character(),
variable_importances=character(),
relative_importance=numeric(),
scaled_importance=numeric(),
percentage=numeric(),
Error_Diabetes=numeric(),
stringsAsFactors=FALSE)
tl <- Sys.time()
for (i in 1:nrow(cluster_keep))X
clust_ID <- as.character(cluster_keep[i,2])
clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF _imp_sup_hex$clusterID==clust_ID,]
clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))
r <- h2o.runif(clustDF)
train <- clustDF[r < 0.6,]

test <- clustDF[(r >= 0.6) & (r < 0.9),] We partition the data into test, train and hold samples for
hold <- clustDF[r >=0.9,] each cluster, same as we did for DRF

ntees is the same, however, in GBM we are penalized
response <- "Diabetes” for overfitting, so H20 has build what is called grid

predictors <- setdiff(names(clustDF), response) search models to tune these parameters. We don’t

. discuss that here, but you can find out more about these
try(gbm <- h2o0.gbm(x = predictors, - . .
y = response, capabilities on the H20 resource site | mentioned

training_frame = train, previously.
validation_frame = test,

ntrees = 1000,

max_depth =6,

learn_rate =0.1,

stopping_rounds =1,

stopping_tolerance = 0.01,

stopping_metric = "misclassification”,
balance_classes =T,
seed =2000000), silent=T)

gbm_var_variable_importances <- as.data.frame(gbm@model$variable_importances)
perf_gbm <- h2o.performance(gbm, clustDF)
gbm_var_variable_importances$Error_Diabetes <- h20.confusionMatrix(perf_gbm)[2,3]
gbm_var_variable_importances$No_Cluster <- clust_ID

model_results_gbm <- rbind(model_results_gbm,gbm_var_variable_importances)

}
t2 <- Sys.time()
t2-t1

35

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Gradient Boosting Machine by cluster (continued ...)

Again, as we did for the DRF we will look at the features by cluster and value them by importance and error
rates.

model_results_gbm_filtered <- sqldf("select * from model_results_gbm where scaled_importance > .7")
plot_ly(model_results_gbm_filtered, x = percentage, y = variable,
mode = "markers", color = No_Cluster) %>%
layout(
titte = "GBM Variable Importance by Cluster",
xaxis = list(title = "Percentage Importance"),
margin = list(l = 120)
)

plot_ly(model_results_gbm_filtered, x = percentage, y = variable, z=Error_Diabetes,
text = paste("Clusters: ", No_Cluster),
type="scatter3d", mode="markers", color = No_Cluster)

GBM Variable Importance by Cluster A%k CLA+ Ak @- W
.

. .16
BPSys1 - . . 19

.
° 2
o3

.
. 28

age . . e . . -

04
Percentage Impartance

As you can see GBM produces outputs similar to that of DRF except they run much differently. The error
rates on average are higher on GBM verses DRF. Running the Grid function on GBM on each cluster might
be beneficial to tune each set of models customized for each group.

36

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Generalized Linear Model by cluster

Now we will run the Generalized Linear Model (GLM). GLM doesn’t have the same variable importance as
with DRF and GBM. What it odes have is a nice feature for standardized coefficient that will help use extract
out the important variables by cluster.

model_results_glm <- data.frame(No_Cluster=character(),
variable_importances=character(),
coefficients=numeric(),
sign=numeric(),
stringsAsFactors=FALSE)

t1 <- Sys.time()
for (i in 1:nrow(cluster_keep)H
clust_ID <- as.character(cluster_keepli,2])
clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusterID==clust_ID,]
clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))
r <- h2o.runif(clustDF)
train <- clustDF[r < 0.6,]
test <- clustDF[(r>=0.6) & (r < 0.9),]
hold <- clustDF[r >=0.9,]

response <- "Diabetes"
predictors <- setdiff(names(clustDF), response)

try(glm <- h20.gIm(x = predictors,
y = response,
training_frame = train,
validation_frame = test,
nfolds =5,
family ="binomial"), silent =T)

glm_var_variable_importances <- as.data.frame(gim@model$standardized_coefficient_magnitudes)
perf_glm <- h2o.performance(glm, clustDF)

glm_var_variable_importances$Error_Diabetes <- h2o.confusionMatrix(perf_glm)[2,3]
glm_var_variable_importances$No_Cluster <- clust_ID

model_results_glm <- rbind(model_results_glm,glm_var_variable_importances)
}
t2 <- Sys.time()
t2-t1
head(model_results_glm,10)

> head{model results _glm,18)
names coefficients sign Error_Diabetes Ho Cluster

1 Age a_.88 POS a.51 a
2 BMI a.34 POS a.51 a
3 PhysactiveDays a.29 POs a.51 a
L Pulse a.23 POsS a.51 a
5 HHIncomeMid 8.23 HEG a.51 a
6 SexMumPartnLife a.18 POs a.51 a
7 AlcoholYear 8.16 HEG a.51 a
8 BPDia3 a8.13 POs a.51 a
o Weight a.13 POS a.51 a
18 DirectChol A8.13 HEG a.51 a

37

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Generalized Linear Model by cluster (continued ...)

The nice thing about the GLM coefficients is that it not only tells the importance, but also the type of
relationship the variables has with the target (positive or negative).

model_results_glm_filtered <- sqldf("select * from model_results_glm where coefficients > .5")
plot_ly(model_results_glm_filtered, x = coefficients, y = names,
mode = "markers", color = No_Cluster) %>%
layout(
title = "GLM Variable Importance by Cluster",
xaxis = list(title = "Scaled Coefficients"),
margin = list(l = 120)
)

plot_ly(model_results_glm_filtered, x = coefficients, y = names, z=Error_Diabetes,
text = paste("Clusters: ", No_Cluster),
type="scatter3d", mode="markers", color = No_Cluster)

EEEe—-— . —— e e e )
GLM Varlable Importance by Cluster O L84 Ak - kb
o
o 12
Pragnanci 14
. 15
AgelstBab 15 . 19
BT o 2
Height - .1 .7
. 35
BML e . 24 . 38
2 5
nBabie: 6
ee o ®® oo 7
BeDiaL | o s

. 32 .
- 33 o® .9
e

04
°

Error_Diabetes — #® @ ¥ .l @
e 9 o ©

0.5 0.6 0.7 08 08
Scaled Coefficients

Again, “Age” pops up as the more prevalence variable of importance across most clusters. Interesting that
cluster 5 had significantly better error rate on Diabetes = “Yes” than the rest. Number of babies also pops up
for cluster 7 which indicates these might be our pregnant mothers with gestational diabetes. Again, not
concluded but simply identifying data points of observations. A medical physician would need to diagnose
you before any action should be taken.

38

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Deep Learning by cluster

Now we will run the deep learning model. We specify the number of hidden nodes, tell it's a imbalanced data
set, and tell it we want to get the variable importance from the model outputs.

model_results_dl <- data.frame(No_Cluster=character(),
variable_importances=character(),
relative_importance=numeric(),
scaled_importance=numeric(),
percentage=numeric(),
variable_included=character(),
Error_Diabetes=numeric(),
stringsAsFactors=FALSE)

t1 <- Sys.time()
for (i in 1:nrow(cluster_keep))X{
clust_ID <- as.character(cluster_keep[i,2])
clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusteriD==clust_ID]
clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))
r <- h2o.runif(clustDF)
train <- clustDF[r < 0.6,]
test <- clustDF[(r>=0.6) & (r < 0.9),]
hold <- clustDF[r>=0.9,]

response <- "Diabetes"
predictors <- setdiff(names(clustDF), response)

try(dl <- h2o.deeplearning(x = predictors,
y = response,
training_frame = train,
activation ="Tanh",
balance_classes = TRUE,
input_dropout_ratio = 0.2,
hidden =¢(100, 100, 100, 100, 100),
epochs =10,

variable_importances = T), silent = T)

dl_var_variable_importances <- as.data.frame(dl@model$variable_importances)
perf_dl <- h2o.performance(dl, clustDF)
dl_var_variable_importances$Error_Diabetes <- h2o.confusionMatrix(perf_dl)[2,3]
dl_var_variable_importances$No_Cluster <- clust_ID

model_results_dI <- rbind(model_results_dl,dl_var_variable_importances)
}
t2 <- Sys.time()
t2-t1
head(model_results_dl,10)

> head{model_results_dl,18)
variable relative_importance scaled_importance percentage Error_Diabetes Mo _Cluster

1 HomeRooms 1.88 1.88 8.631 8.4y [§]
2 AgeFirstHarij a.94 8.94 8._829 0_44 a
3 BPSysfave a.89 a.89 8.827 844 a
I} SexAge a._88 0._88 8.827 0_44 a
5 SleepHrsHight a.87 B.87 8.827 844 a
6 SexMumPartnLife a._87 8.87 8.827 0_44 a
7 fAlcohol¥ear a.87 8.87 8.827 844 a
] SDHUPSU a.87 B.87 8.827 844 a
Q DirectChol a.87 8.87 8.827 844 a 39
18 BPDia3 a.87 B.87 8.827 844 a

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Running Deep Learning by cluster (continued...)

Let’s take a look at our variable importance like we have done on the others.

model_results_dl_filtered <- sqldf("select * from model_results_dl where scaled_importance > .98")
plot_ly(model_results_dl_filtered, x = percentage, y = variable,
mode = "markers", color = No_Cluster) %>%
layout(
titte = "DL Variable Importance by Cluster",
xaxis = list(title = "Percentage Importance"),
margin = list(l = 120)
)

plot_ly(model_results_dl_filtered, x = percentage, y = variable, z=Error_Diabetes,
text = paste("Clusters: ", No_Cluster),
type="scatter3d", mode="markers", color = No_Cluster)

T Viewer Zoom T | T Viewsr Zoom ¥
DL Variable Importance by Cluster ac B+ OEAX a= e OE CLA+ i @ M
o 1
10 13
EPsys1 1 14
BPDial 13 15
DaysPhysHithBad 4 7
) ) 15 19
AgeFirsthari e Ao
‘SleapHrshight 17 21
BPDiatve 1 2
s B b * §Z
BPDia3 2 | 30
age1stBaby n 3
owectchal x I #
06
Pulse 2 @ P ] 36
SexnumParrea 27 @ £
BPSysave 28 ° ° * 7
WIINT2VR u | — S S, N
N — ;; Error_Diabetes |
z w v
Baysmensithead . E) 04 ®e ° o
= BpDia2 :; ° LIS e :‘
Sextumpartnlife e ] (]
HHIncomeMid s e® o o \ o0 |
BPSys3 38 ° | °
o 3 02 o |®
7 L Y s
o 8 Heont g °
SOMVPSU - 9 APrepnandis ° °
nilaties e
nPTEgnances HH Mg
income
aeohalvear Eiswiz
weight 8psys2 °
Serhos - N DirectChot 0.0275
0.028
Poverty BPDisAve
0.0285
HomeRooms percentage
0.029
00275 o.028 0.0285 0.023 00295 0.03 00305
Percentage Importance

We see once again the important variables by each cluster in the left graph and the 3D graph that includes
error rate of the diabetes = “Yes” category.

40

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



4. Predicting diabetes using H20+R

Bringing it all together

Now that we have an understanding of the features/variables that drive each of the clusters across four
different models, we will now run all four models on the entire imputed data set.

This will be similar to the process we did earlier with exception to adding the predictive outputs back into the
original data set.

First, we run the Distributed Random Forest:

#—# *kkkkkkkkkkkkkk DRF *kkkkkkkkkkkhhhhhhhkkhhhkhhhhkkkkhkhkhhhkrx

str(nhanes_DF_imp_sup_hex)

r <- h2o.runif(nhanes_DF_imp_sup_hex)

train <- nhanes_DF_imp_sup_hex[r < 0.6,]

test <- nhanes_DF _imp_sup_hex[(r >=0.6) & (r <0.9),]

hold <- nhanes_DF_imp_sup_hex[r>=0.9,]

response <- "Diabetes"

predictors <- setdiff(names(nhanes_DF_imp_sup_hex), response)

drf <- h2o.randomForest(x = predictors, y = response,
training_frame = train,
validation_frame = test,
ntrees = 1000, You can see the new fields added to the data
balance_classes =T) site at the end.

drf

drf_pred_hex <- h2o.predict(drf, newdata=hold)

perf_drf <- h2o.performance(drf, nhanes_DF_imp_sup_hex)
h2o.confusionMatrix(perf_drf)

drf_pred_hex2 <- h2o.predict(drf, newdata=nhanes_DF_imp_sup_hex)
nhanes_DF_imp_sup_hex$DRF_predict <- drf_pred_hex2$predict
nhanes_DF_imp_sup_hex$DRF_Yes <- drf_pred_hex2$Yes
nhanes_DF_imp_sup_hex$DRF_No <- drf_pred_hex2$No

> summarg(nﬁan;?gil)if:imp;sup:hex)

clusterID AgeistBaby AgeFirstHarij nBabies nPregnancies Smokefnge Testosterone PhysnactiveDays

29:658 Min. :14.88  HMin. : B.88  HMin. : B.88  HMin. : 1.888 Hin. : 6.88  Hin. : 8.25  Min. :1.088

26:6086 1st Qu.:21.88 1st Qu.:16.88 1st Qu.: 2.88 1st Qu.: 3.880 1st Qu.:z17.80 1st Qu.: 76.56 1st Qu.:3.080

37:681 Median :21.88 HMedian :16.88 Median : 2.88 Median : 3.888 Hedian :17.88 Hedian : 76.56 Median :3.088

32:528 Hean 21.19 Hean :16.29 Hean 2.25 Hean : 3.148 Hean =17 .43 Hean - 133.64% Hean :3.312

8 584 3rd Qu.:21.688 3rd Qu.:16.88 3rd Qu.: 2.088 3rd Qu.: 3.080 3rd Qu.:=17 .80 3rd Qu.: 76.56 3rd Qu.:3.080

33:487 HMax. :39.080 Max . :56.80 Max . =17.88 Hax . :32.000 Hax . =72.80 Hax . 2543 .99 Hax . :7.000

AlcoholDay SexNumPart¥ear  Sexmge SexNumPartnLife  AlcoholYear DaystentHlthBad DaysPhysHlthBad

Min. 1.8088 Hin. : B.888 Min. D 9.88 Min. : B.8@8 Min. : B.88 Min. : 9.888 Hin. : B.888

1st Qu.: 2.0880 1st Qu.: 1.888 1st Qu.:16.88 1st Qu.: 3.888 1st Qu.: 4.88 1st Qu.: B.888 1st Qu.: B8.888

Hedian : 2.888 Hedian : 1.888 Hedian :17.88 Hedian : 5.8088 Hedian : 12.88 HMedian : B8.888 Hedian : B.088

Hean 2.5 Hean : 1179 Hean :17.27 Hean D 9.743 Hean EE LU ] Hean : 3.734 Hean : 3.588

3rd Qu.: 2.080 3rd Qu.: 1.088 3rd Qu.:18.88 3rd Qu.: 8.888 3rd Qu.: 52.88 3rd Qu.: 3.088 3rd Qu.: 2.888

Hax . :82.000 Hax. :27.008 Max . :55.80 HMax . :500.0808 HMax. :364.008 Hax . :30.008 Hax . :30.008

BPSys1 BPDia1 UrineFlowl HHIncomeMid DirectChol TotChol BPSys2

Min. 1 72.8  Min. : 8.88  Hin. : B.8888  Min. : 2588 HMin. :8.368  HMin. : 1.538  Min. HLN

1st Qu.:112.8 1st Qu.: 64.88 1st Qu.: @.4292 1st Qu.: 22488 1st Qu.:1.107 1st Qu.: 4.281 1st Qu.:110.8

Median :128.8 HMedian : 70.80 Hedian : 8.6695 Median : 39948 HMedian :1.287 HMedian : 4.899 Median :128.8

Hean 1231 Hean - 70.97 Hean : 8.9329 Hean : 47278 Hean :1.352 Hean T 4,989 Hean :122.3

3rd Qu.:132.8 3rd Qu.: 76.88 3rd Qu.: 1.8987 3rd Qu.: 69971 3rd Qu.:1.547 3rd Qu.: 5.554 3rd Qu.:130.08

HMax . :238.8 HMax . :134.88 Hax . =17 .1678 HMax . :18688088 HMax. :4.638 HMax. :13.658 HMax . :234.8

BPDia2 BPSys3 BPDia3 Poverty BPSyshAve BPDiafve Pulse UrineUol1

Hin. : B8.88 Hin. : 76.8  Hin. : B8.88 Hin. :8.888  Hin. = 74 Hin. : B.88 Hin. : 36.8  Hin. : 8.8

1st Qu.: 62.80 1st Qu.:118.8 1st Qu.: 62.88 1st Qu.:1.088 1st Qu.:111 1st Qu.: 63.088 1st Qu.: 64.8 1st Qu.: 51.8

Median : 78.88 HMedian :128.8 Hedian : 78.88 Median :1.898 Hedian :119 Hedian : 78.88 Hedian : 72.8 Hedian : 98.8

Hean : 69.39 Hean :121.6 Hean : 69.83 Hean :2.357 Hean 122 Hean : 69.25 Hean D ¥2.6 Hean Ha b L

3rd Qu.: 76.80 3rd Qu.:138.8 3rd Qu.: 76.088 3rd Qu.:3.658 3rd Qu.:138 3rd Qu.: 77.88 3rd Qu.: 88.8 3rd Qu.:155.8

Hax . :134.60 Hax . :232.8 Hax . :128.08 HMax . :5.0080 HMax . :233 Hax. :131.08 Hax. :172.8 HMax. 524,98

BHI Height Weight HomeRooms SleepHrsHight fAge WUTINT2YR WTHEC2YR

Min. :13.18  HMin. :123.3  HMin. : 29.18  Hin. :1.008 Hin. : 2.888 Hin. z18.88  Hin. © 4p84  HMin. H a

1st Qu.:24.15 1st Qu.:1608.2 1st Qu.: 66.32 1st Qu.: 4.0080 1st Qu.: 6.080 1st Qu.:=32.80 1st Qu.: 15973 1st Qu.: 15883

Median :27.66 Median :167.8 Median : 77.68 Hedian : 5.808 HMedian : 7.880 Hedian :-47.88 Hedian : 23978 Median : 24839

Hean :28.88 Hean t167.3 Hean : ga.gt Hean - 5.764 Hean : 6.861 Hean 47 .78 Hean : 37818 Hean : 37134

3rd Qu.:32.83 3rd Qu.:174.1 3rd Qu.: 91.35 3rd Qu.: 7.0888 3rd Qu.: 8.080 3rd Qu.:63.88 3rd Qu.: 44584 3rd Qu.: 44961

Hax . :84._87 Hax . :284.5 Hax . :239.48 Hax . :13.0888 Hax . :12.880 Hax . -80.80 Hax . :228233 Hax. 1222580

SDHUPSU SDHUSTRA Diabetes DRF_predict DRF_Yes DRF_Ho

Min. :1.0888  HMin. : 75.88  HNo ;18495 Ho :18872  Min. :0.000088 Hin. :0.8086821

1st Qu.:1.888 1st Qu.: 81.88 Yes: 1642 VYes: 2865 1st Qu.:9.083973 1st Qu.:8.953321

Median :2.888 Median : 88.88 Median :8.813984  Hedian :8.985182

Hean :1.588 Hean - B8.14 Hean -8.0987180 Hean -8.981298

3rd Qu.:2.088 3rd Qu.: 95.88 3rd Qu.:9.045686 3rd Qu.:z8.995834 41
3

Hax . :3.008 Hax . :1683.00 Hax . t08.993179 Hax . =1.000000

Data Science Center of Excellence



4. Predicting diabetes using H20+R

Bringing it all together (continued...)

Now that we have an understanding of the features/variables that drive each of the clusters across four
different models, we will now run all four models on the entire imputed data set.

This will be similar to the process we did earlier with exception to adding the predictive outputs back into the
original data set.

First, we run the Distributed Random Forest:

#—# *kkkkkkkkkkkkkk DRF *kkkkkkkkkkkhhhhhhhkkhhhkhhhhkkkkhkhkhhhkrx

str(nhanes_DF_imp_sup_hex)

r <- h2o.runif(nhanes_DF_imp_sup_hex)

train <- nhanes_DF_imp_sup_hex[r < 0.6,]

test <- nhanes_DF _imp_sup_hex[(r >=0.6) & (r <0.9),]

hold <- nhanes_DF_imp_sup_hex[r>=0.9,]

response <- "Diabetes"

predictors <- setdiff(names(nhanes_DF_imp_sup_hex), response)

drf <- h2o.randomForest(x = predictors, y = response,
training_frame = train,
validation_frame = test,
ntrees = 1000, You can see the new fields added to the data
balance_classes =T) site at the end.

drf

drf_pred_hex <- h2o.predict(drf, newdata=hold)

perf_drf <- h2o.performance(drf, nhanes_DF_imp_sup_hex)
h2o.confusionMatrix(perf_drf)

drf_pred_hex2 <- h2o.predict(drf, newdata=nhanes_DF_imp_sup_hex)
nhanes_DF_imp_sup_hex$DRF_predict <- drf_pred_hex2$predict
nhanes_DF_imp_sup_hex$DRF_Yes <- drf_pred_hex2$Yes
nhanes_DF_imp_sup_hex$DRF_No <- drf_pred_hex2$No

> summarg(nﬁan;?gil)if:imp;sup:hex)

clusterID AgeistBaby AgeFirstHarij nBabies nPregnancies Smokefnge Testosterone PhysnactiveDays

29:658 Min. :14.88  HMin. : B.88  HMin. : B.88  HMin. : 1.888 Hin. : 6.88  Hin. : 8.25  Min. :1.088

26:6086 1st Qu.:21.88 1st Qu.:16.88 1st Qu.: 2.88 1st Qu.: 3.880 1st Qu.:z17.80 1st Qu.: 76.56 1st Qu.:3.080

37:681 Median :21.88 HMedian :16.88 Median : 2.88 Median : 3.888 Hedian :17.88 Hedian : 76.56 Median :3.088

32:528 Hean 21.19 Hean :16.29 Hean 2.25 Hean : 3.148 Hean =17 .43 Hean - 133.64% Hean :3.312

8 584 3rd Qu.:21.688 3rd Qu.:16.88 3rd Qu.: 2.088 3rd Qu.: 3.080 3rd Qu.:=17 .80 3rd Qu.: 76.56 3rd Qu.:3.080

33:487 HMax. :39.080 Max . :56.80 Max . =17.88 Hax . :32.000 Hax . =72.80 Hax . 2543 .99 Hax . :7.000

AlcoholDay SexNumPart¥ear  Sexmge SexNumPartnLife  AlcoholYear DaystentHlthBad DaysPhysHlthBad

Min. 1.8088 Hin. : B.888 Min. D 9.88 Min. : B.8@8 Min. : B.88 Min. : 9.888 Hin. : B.888

1st Qu.: 2.0880 1st Qu.: 1.888 1st Qu.:16.88 1st Qu.: 3.888 1st Qu.: 4.88 1st Qu.: B.888 1st Qu.: B8.888

Hedian : 2.888 Hedian : 1.888 Hedian :17.88 Hedian : 5.8088 Hedian : 12.88 HMedian : B8.888 Hedian : B.088

Hean 2.5 Hean : 1179 Hean :17.27 Hean D 9.743 Hean EE LU ] Hean : 3.734 Hean : 3.588

3rd Qu.: 2.080 3rd Qu.: 1.088 3rd Qu.:18.88 3rd Qu.: 8.888 3rd Qu.: 52.88 3rd Qu.: 3.088 3rd Qu.: 2.888

Hax . :82.000 Hax. :27.008 Max . :55.80 HMax . :500.0808 HMax. :364.008 Hax . :30.008 Hax . :30.008

BPSys1 BPDia1 UrineFlowl HHIncomeMid DirectChol TotChol BPSys2

Min. 1 72.8  Min. : 8.88  Hin. : B.8888  Min. : 2588 HMin. :8.368  HMin. : 1.538  Min. HLN

1st Qu.:112.8 1st Qu.: 64.88 1st Qu.: @.4292 1st Qu.: 22488 1st Qu.:1.107 1st Qu.: 4.281 1st Qu.:110.8

Median :128.8 HMedian : 70.80 Hedian : 8.6695 Median : 39948 HMedian :1.287 HMedian : 4.899 Median :128.8

Hean 1231 Hean - 70.97 Hean : 8.9329 Hean : 47278 Hean :1.352 Hean T 4,989 Hean :122.3

3rd Qu.:132.8 3rd Qu.: 76.88 3rd Qu.: 1.8987 3rd Qu.: 69971 3rd Qu.:1.547 3rd Qu.: 5.554 3rd Qu.:130.08

HMax . :238.8 HMax . :134.88 Hax . =17 .1678 HMax . :18688088 HMax. :4.638 HMax. :13.658 HMax . :234.8

BPDia2 BPSys3 BPDia3 Poverty BPSyshAve BPDiafve Pulse UrineUol1

Hin. : B8.88 Hin. : 76.8  Hin. : B8.88 Hin. :8.888  Hin. = 74 Hin. : B.88 Hin. : 36.8  Hin. : 8.8

1st Qu.: 62.80 1st Qu.:118.8 1st Qu.: 62.88 1st Qu.:1.088 1st Qu.:111 1st Qu.: 63.088 1st Qu.: 64.8 1st Qu.: 51.8

Median : 78.88 HMedian :128.8 Hedian : 78.88 Median :1.898 Hedian :119 Hedian : 78.88 Hedian : 72.8 Hedian : 98.8

Hean : 69.39 Hean :121.6 Hean : 69.83 Hean :2.357 Hean 122 Hean : 69.25 Hean D ¥2.6 Hean Ha b L

3rd Qu.: 76.80 3rd Qu.:138.8 3rd Qu.: 76.088 3rd Qu.:3.658 3rd Qu.:138 3rd Qu.: 77.88 3rd Qu.: 88.8 3rd Qu.:155.8

Hax . :134.60 Hax . :232.8 Hax . :128.08 HMax . :5.0080 HMax . :233 Hax. :131.08 Hax. :172.8 HMax. 524,98

BHI Height Weight HomeRooms SleepHrsHight fAge WUTINT2YR WTHEC2YR

Min. :13.18  HMin. :123.3  HMin. : 29.18  Hin. :1.008 Hin. : 2.888 Hin. z18.88  Hin. © 4p84  HMin. H a

1st Qu.:24.15 1st Qu.:1608.2 1st Qu.: 66.32 1st Qu.: 4.0080 1st Qu.: 6.080 1st Qu.:=32.80 1st Qu.: 15973 1st Qu.: 15883

Median :27.66 Median :167.8 Median : 77.68 Hedian : 5.808 HMedian : 7.880 Hedian :-47.88 Hedian : 23978 Median : 24839

Hean :28.88 Hean t167.3 Hean : ga.gt Hean - 5.764 Hean : 6.861 Hean 47 .78 Hean : 37818 Hean : 37134

3rd Qu.:32.83 3rd Qu.:174.1 3rd Qu.: 91.35 3rd Qu.: 7.0888 3rd Qu.: 8.080 3rd Qu.:63.88 3rd Qu.: 44584 3rd Qu.: 44961

Hax . :84._87 Hax . :284.5 Hax . :239.48 Hax . :13.0888 Hax . :12.880 Hax . -80.80 Hax . :228233 Hax. 1222580

SDHUPSU SDHUSTRA Diabetes DRF_predict DRF_Yes DRF_Ho

Min. :1.0888  HMin. : 75.88  HNo ;18495 Ho :18872  Min. :0.000088 Hin. :0.8086821

1st Qu.:1.888 1st Qu.: 81.88 Yes: 1642 VYes: 2865 1st Qu.:9.083973 1st Qu.:8.953321

Median :2.888 Median : 88.88 Median :8.813984  Hedian :8.985182

Hean :1.588 Hean - B8.14 Hean -8.0987180 Hean -8.981298

3rd Qu.:2.088 3rd Qu.: 95.88 3rd Qu.:9.045686 3rd Qu.:z8.995834 42
3

Hax . :3.008 Hax . :1683.00 Hax . t08.993179 Hax . =1.000000

Data Science Center of Excellence



4. Predicting diabetes using H20+R

Bringing it all together (continued ...)
Next, we run the Gradient Boosting Machine:

## *kkkkkkkkkkkhkk GBM *kkkkkkkkkkhkhhhkkhhhhhhhhkkkhhhhhhkhkxx

gbm <- h20.gbm(x = predictors,
y = response,
training_frame = train,
validation_frame = test,

ntrees =1000,
max_depth =6,
learn_rate =0.1,

stopping_rounds =1,
stopping_tolerance = 0.01,
stopping_metric = "misclassification",
balance_classes =T,
seed =2000000)
gbm
gbm_pred_hex <- h2o.predict(gbm, newdata=hold)
perf_gbm <- h2o.performance(gbm, nhanes_DF_imp_sup_hex)
h2o.confusionMatrix(perf_gbm)

gbm_pred_hex2 <- h2o.predict(gbm, newdata=nhanes_DF_imp_sup_hex)
nhanes_DF_imp_sup_hex$GBM_predict <- gbm_pred_hex2$predict
nhanes_DF_imp_sup_hex$GBM_Yes <- gbm_pred_hex2$Yes
nhanes_DF_imp_sup_hex$GBM_No <- gbm_pred_hex2$No
summary(nhanes_DF_imp_sup_hex)

Then, we run the Generalized Linear Model:

glm <- h2o0.gIm(x = predictors,
y = response,
training_frame = train,
validation_frame = test,
nfolds =5,
family = "binomial")
glm
glm_pred_hex <- h2o.predict(glm, newdata=hold)
perf_glm <- h2o.performance(gim, nhanes_DF_imp_sup_hex)
h2o.confusionMatrix(perf_glm)

glm_pred_hex2 <- h2o.predict(glm, newdata=nhanes_DF_imp_sup_hex)
nhanes_DF_imp_sup_hex$GLM_predict <- gim_pred_hex2$predict
nhanes_DF_imp_sup_hex$GLM_Yes <- gim_pred_hex2$Yes
nhanes_DF_imp_sup_hex$GLM_No <- gim_pred_hex2$No
summary(nhanes_DF_imp_sup_hex)

43

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



Bringing it all together (continued ...)

HH#

dl <- h2o.deeplearning(x

dl

DL

y

training_frame
activation
balance_classes

hidden

epochs

= respon
= train,

= TRUE,

= predictors,

Se,

"Tanh",

=¢(100, 100, 100, 100, 100),

= 100)

dl_pred_hex <- h2o.predict(dl, newdata=hold)
perf_dl <- h2o.performance(dl, nhanes_DF_imp_sup_hex)
h20o.confusionMatrix(perf_dl)

dl_pred_hex2 <- h2o.predict(dl, newdata=nhanes_DF_imp_sup_hex)
nhanes_DF_imp_sup_hex$BL_predict <- dl_pred_hex2$predict
nhanes_DF_imp_sup_hex$DL_Yes <- dl_pred_hex2$Yes

nhanes_DF_imp_sup_hex$DL_No <- dlI_pred_hex2$No
summary(nhanes_DF_imp_sup_hex)

> 5ummar§(nﬁanéE_DF:imp_SuE_hex)
clusterID AgeistBaby

20:658 Hin.
26:606 15t Qu.
37:601 Hedian
32:528 Hean

A 584 3rd Qu.
33487 Hax.
AlcoholDay

Min. : 1.008
1st Qu.: 2.0888
Hedian : 2.0888
Mean D 2.5
3rd Qu.:- 2.0808
Max . 82 .080
BPSys1

Min. : 72.8
15t Qu.:112.8
Hedian :z128.8
Mean :123.1
3rd Qu.:-132.8
Max . 238.0
BPDia2

Min. : 9.08
1st Qu.: 62.88
Hedian = 7@.88
Hean - 69.39
3rd Qu.: 76.008
Max . :134.808
BMI

Min. =13 .18

1st Qu.:24.15

Hedian :z27.66

Hean 28.80

3rd Qu.:-32.83

Max . 84 BT

SDHUPSU

Min. :1.00a

1st Qu.:1.868

Hedian :z2.888

Hean :1.588

3rd Qu.:-2_9088

Max . :3.888

GEM_Ho

Min. 8.8115
1st Qu.:B.8499

Median :-9_8838
Hean tB.8743
3rd Qu.:-0.8943
Max . tB8.9843

:14.88
t21.88
21.88
:21.19
:21.688
:39.68
SexNumP
Hin.
15t Qu.
Hedian
Hean
3rd Qu.
Hax.
BPDia1
Min.
15t Qu.
Hedian
Hean
3rd Qu.
Max .
BPSys3
Hin.
15t Qu.
Hedian
Hean
3rd Qu.
Hax.
Height
Min. H
15t Qu.:
Hedian :
Hean H
3rd Qu.:
Max . H
SDHUSTRA
Min.
1st Qu.
Hedian
Hean
3rd Qu.
Max . H
GLH_pre
Ho :9%5%
Yes: 258

AgeFirstHarij nBabie
Min. : B.o@a Min.
1st Qu.:16.88 1st Qu
Median :16.80 Median
Mean 16.29 Mean
3rd Qu.:16.88 3rd Qu
Hax . :56.88 Max .
art¥ear SexAge
: a.888 Min. : 9.88
: 1.888 15t Qu.:16.88
: 1.868 Hedian :17.88
@ 1.179 Mean :17.27
: 1.888 3rd Qu.:18.88
t27.888 Hax . :55.88
UrineFlowl
a.8a8 Min. : @8.980688
L] 15t Qu.: B.4292
78.88 Hedian : B.669%
70.87 Mean : B.92329
76.88 3rd Qu.: 1.8987
134.688 Hax . 17 .1678
BPDia3
: 76.0 Min. : 8.08
:118.8 15t Qu.: 62.88
:128.8 Hedian : 70.8A
12106 Hean I 69.83
:138.8 3rd Qu.: 76.80
t232.8 Hax . :128.80
Weight
123.3 Hin. : 29.18
1608.2 1st Qu.: 66.32
167.8 Hedian : 77.68
167.3 Hean : 88.81
174.1 3rd Qu.: 91.35
284.5 HMax. 239.40
Diabetes  DRF_
75.88 Ho 18495 Ho :
81.688 Yes: 1642 VYes:
88.080
88.14
95.688
1683.688
dict GLH Yes
6 Min. :8.881459
1 1st Qu.:8.829367

Median :-9._@75881
Mean t8.1358889
3rd Qu.:z8.19123%5
Max . 8931736

s nPregnancies Smokefge Testosterone PhysActiveDays
- B.008 Hin. : 1.68080 Min. L Min. H 8.25 Min. :1.00a
.z 2.88 1st Qu.: 3.688 1st Qu.:17.688 1st Qu.: 76.56 1st Qu.:3.868
: 2.008 Hedian : 3.0800 Median :=17.088 Median = 76.56 Median :z3.0808
D 2.2% Hean D 3.148 Mean :17.43 Hean : 133.64 Mean 13.312
.z 2.688 3rd Qu.: 3.0888 3rd Qu.:17.88 3rd Qu.: 76.56 3rd Qu.:3.888
17 .88 Hax. :32.880 Max . ¥2.88 Max . 2543.99 Hax . t7.88a
SexHumPartnLife AlcoholYear DaysHentHlthBad DaysPhysHlthBad
Min. :  B.008 Min. : 9.08 Hin. : @.@00 Min. : Bg.000
1st Qu.: 3.8068 15t Qu.: 4. .88 15t Qu.: B8.688 15t Qu.: 6.688
Median : 5.888 Hedian : 12.88 Hedian : 9.888 Hedian : 9.0888
Hean T 9.743 Mean HE L) | Hean 1 3.734 Mean : 3.588
3rd Qu.: B8.088 3rd Qu.:- 52.08 3rd Qu.: 3.808 3rd Qu.: 2.0808
Max . :508.0088 Hax . :364.00 Hax. :30.0880 Hax . :30.000
HHIncomeMid DirectChol TotChol BPSys2
Hin. 2580 Min. :0.360 Min. : 1.530 Min. : Fh.@
15t Qu.: 22488 15t Qu.:1.187 15t Qu.:z 4.281 1st Qu.:118.8
Hedian : 39948  Hedian :=1.287 Hedian : 4.899 Median :1208.8
Hean : 47278 Mean :1.352 Hean - 4.089 Mean :122.3
3rd Qu.: 69971 3rd Qu.:-1.547 3rd Qu.:- 5.554 3rd Qu.:138.8
Hax. :1adgean Hax . 4638 Max . :13.658 Hax . 234.8
PFoverty BPiyshAve BFDianve Pulse UrinelUold
Min. :0.000 Hin. Ha Min. : 0.80 Min. : 36.0 Hin. : 8.8
1st Qu.:z1.888 15t Qu.:111 1st Qu.: 63.88 1st Qu.: 64.8 15t Qu.: 51.8
Hedian :1.898 Hedian :119 Median : 708.88 Median : 72.8 Hedian : ?8.8
Hean t2.357 Hean 122 Hean I 69.25 Hean D ¥2.6 Hean 1147
3rd Qu.:-3.658 3rd Qu.:138 3rd Qu.: 77.88 3rd Qu.: 88.08 3rd Qu.:155.8
Max . :5.888 HMax. t233 Hax . :131.88 Max . 172.8 HMax. 5248
HomeRooms S$leepHrsHight Age UTINT2YR WTHEC2YR
Min. : 1.008 Hin. : 2.8080 Min. :18.00 Hin. H1i Min. H s]
1st Qu.: 4.688 15t Qu.: 6.688 1st Qu.:32.88 15t Qu.: 15973 1st Qu.: 15883
Median : 5.888 Hedian : 7.888 Hedian :zA47.88 Hedian : 23978 Hedian : 24839
Hean : 5.764 Hean : 6.861 Hean 47 .78 Hean : 3¥e1e Hean T 37134
3rd Qu.:- 7.808 3rd Qu.: 8_888 3rd Qu.:-63.0808 3rd Qu.: 4a45so4 3rd Qu.:- 44961
Max . :13.088 HMax. :12.880 Max . :88.00 Hax. 1228233 Max . 1222580
predict DRF_Yes DRF_Ho GBH_predict GBH Yes
18872 Min. :@8.808068 Min. tB8.886821 Ho 7867 Hin. tB.89567
2865 1st Qu.:8.803973 1st Qu.:8.953321 Yes:4278 1st Qu.:@.18365
Median :8.8139864 Hedian :8.985182 Hedian :@8.1161@
Hean tB.898718 Hean t8.981298 Hean B.12578
3rd Qu.:B.845686 3rd Qu.:8.995834 3rd Qu.:8.150888
Max . t8.993179 Max . :1.8080888 Hax. tB.1885)4
GLHM_ Mo BL_predict DL_Yes DL_Ho
Min. :0.86826 Ho 18788 Hin. :2.333e-22 Min. :G.873e-14
1st Qu.:8.88783 Yes: 1429 st Qu.:2.333e-22 1st Qu.:9.998e-81
Median :-98.92319 Median :-2._333e-22 Median :-9._998e-81
Hean tB_86412 HMean :1.238e-M1 Mean t8.762e-81
3rd Qu.:-0_96970 3rd Qu.:-2.333e-22 3rd Qu.:-9.990e-01
Max . tB.99854 Max . :1.8008e+88 Max . :1.808e+808



4. Predicting diabetes using H20+R

Bringing it all together (continued ...)
The final thing to do is to visualize how much each cluster is at risk of contracting diabetes.

## *kkkkkkkkkkkhkk VIZ Clu sters kkkkkkkkkkkkkkhkkkkkkkhkkhkhkkkk

nhanes_DF_Final_Viz <- as.data.frame(nhanes_DF_imp_sup_hex)
str(nhanes_DF_Final_Viz)

agg_nhanes_Viz <- sqldf("select clusterID, avg(DRF_Yes) as DRF,

avg(GBM_Yes) as GBM, avg(GLM_Yes) as GLM, avg(DL_Yes) as DL from nhanes_DF_Final_Viz group by clusterID")
library(reshape)

agg_nhanes_Viz2 <- melt(agg_nhanes_Viz, id="clusterID")

plot_ly(agg_nhanes_Viz2, x = clusterID, y = value, type = "bar", color = variable).

[—
7] Viewer Zoom LE 23

DL

GLM
GBM
DRF

I 0.4

0.35

0.2

0.25

value

0.2

0.05

o

4] 5 20 30

clusterID

We can see from the graph that clearly cluster 5 is the most at risk indicated by all four models. The risk
percentages range from ~15% to 40%. Not surprising we see these ranges so wide as our predicted error
rate on each model was ~20-30% depending on the model.

45

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



5. Summary / Conclusion

What did we learn/do?

We did several things in this walk through of H20O.ai and R capabilities dealing with the analysis of diabetes.
Let’s recap each step and what we discovered along the way:

1) Through the EDA phase we learned that number of pregnancies, number of babies, age and weight seem
to be areas where large separations in central tendency and variation exists between those with diabetes
and those without. Also, the use of plotly for our visualizations allowed us to uniquely drill down and filter
within the EDA and other areas as well.

2) We created 40 clusters groups to partition our data set within identifiable homogeneous groups and
overlaid the proportion of diabetes found within each.

3) Next we four ran individual models on each cluster group (filtered by at least 100) to determine the main
drivers that help predicting diabetes within each group.

4) Finally, we again ran all four models on the entire imputed data set appending the predictive outputs back
within the data set to determine overall cluster risk of diabetes.

This approach is useful in that it helps researches develop and validate assumptions about risk of diabetes
and how those risk vary by certain groups of individuals. Some of the analysis showed that the number of
pregnancies and number of babies as key factors that contribute heavily to diabetes. This might help
researches identify other features as well as groups for gestational diabetes.

Review of H20 capabilities

The H20.ai platform allowed use to iterate through several computational intense process within R such as
data imputation, finding the right k size for clusters, converging through thousands of trees for modeling, etc.

This capabilities are value add into the data scientist tool kit and helps with speed of processing.

Future enhancements & recommendations

This work was fun to put together and very insightful for me as well, but with any documentation on
approaches in analytics there are flaws and this document is no exception. I've laid out below how this work
can be enhanced below:

1) The data imputation methods are very simple within H2O.ai and as a result you get simple basic answers.
Our imputation method using H20.ai could be enhanced by using “by” clauses within our function of
features that have more (or fully) presence within the data set. By using features that indicated no
presence of NA’'s such as “Age”, “Gender”, etc. could be used to help impute missing values. H20.ai
imputation methods can also be enhanced by taking more capabilities on like those found within the R
“‘mice” package (Multivariate Imputation by Chained Equations).

2) Although the grid functions for parameter setting was run for the Gradient Boosting Machine sections, it
was not included in this work.

3) The overall error rates of these models are too high for diabetes = “Yes” and therefore no causal
conclusion or actions should be taken fully as a result of the models predictive outputs. The H20.ai
models could be enhanced by allowing for weighting the loss matrix. To some degree it does with the
balancing parameter, however if you wanted to penalize the error rate on “Yes” more than “No” there is no
place to do that as far as | have found.

46

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



5. Summary / Conclusion

Future enhancements & recommendations

This may go without saying, but just in case: the
results of this analysis demonstrated in this
document does not in any way suggestion anyone to
self diagnose or take any medical or any other

actions as a result of the results produced in this
document. Please see a certified and licensed
physician for any medical related concerns or
guestions you might have.

47

Published by Colaberry Inc. © 2016 — Data Science Center of Excellence



