
Analyzing Diabetes with H2O & R
(feat. Plotly)

By Josh W. Smitherman - Chief Data Scientist

JW@colaberry.com

Better Healthcare Insights

Powered by: Data Science Center of Excellence

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

1

mailto:JW@colaberry.com

About the Author

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

2

Josh W. Smitherman is Chief Data Scientist at Colaberry

Inc. where he leads the data science practice of integrated

advanced analytical capabilities into client’s and

organization’s value chain processes. Josh holds a Masters

of Operations Research from Southern Methodist University

in Dallas Texas, Master Certificate in Applied Statistics from

Penn State, and a B.B.A in Management Information

Systems from Texas Tech University. Certified Lean Six

Sigma Black Belt, where he has implemented continuous

improvement and analytical processes within many

organizations. He has worked on data science projects over

the last 10 years in retail, CPG, healthcare (clinical trails and

patient outcome health), consumer and auto financial

services, oil and gas, and supply chain. He has worked with

companies like Wal-Mat, GE, Dr. Pepper Snapple Group,

Pergo, Mondelez, MyHealth Access Network, CBRE,

Costco, Lowe’s, Home Depot, State Farm, UK healthcare

networks, and many others.

Contents

1. Introduction

• What is R? What is H2O.ai and how they work together………………….4

• Review of NHANES dataset………………………………………………….5

• Diabetes analytics approach using H2O.ai + R…………………………….6

2. Expository data analytics (EDA) feat. Plotly

• EDA with Plotly…………………………………………………………………7

• H2O imputation for missing values………………………………………….11

• Summary of EDA……………………………………………………………...21

3. Clustering using H2O+R

• Clustering NHANES - diabetes analysis……………………………………22

• Determine the appropriate number of clusters…………………………….23

• Run kmeans and review cluster sizes………………………………………25

• Clustering and diabetes………………………………………………………28

4. Predicting diabetes using H2O+R

• Predictive models overview in H2O…………………………………………31

• Running Distributed Random Forest by cluster……………………………32

• Running Gradient Boosting Machine by cluster…………………………...35

• Running General Linear Model by cluster………………………………….37

• Running Deep Learning by cluster………………………………………….39

• Bringing it all together………………………………………………………...41

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

3

5. Summary / Conclusion

• What did we learn/do?...46

• Review of H2O capabilities…………………………………………………...46

• Future enhancements & recommendations…………………………………46

1. Introduction

What is R?

R is a widely used (and free) software environment for statistical computing and graphics. Many academic

institutions and organizations contribute to the wide array of packages that enable R to quickly gain the latest

and greatest machine learning, statistical, and/or graphical capabilities. When connected with RStudio (an R

integrated development environment or IDE) helps users to quickly develop and deploy analytical results.

If you are not familiar with these tools, access the links below for more information:

https://www.r-project.org/

https://www.rstudio.com/

What is H2O.ai?

H2O.ai is an in memory engine that allows you to run R code (and others languages such as Python, Java,

etc.) in a distributed fashion. This helps when you need to run large or higher computational algorithms for

quicker and deeper analytics verses a single node. H2O.ai has a nice set of pre-built packages for clustering,

gradient boosting machine, random forest, deep learning, and others. Another great appeal to using this

environment is from a programming API standpoint to process fast computations along with applications for

analytics results.

If you are not familiar with these tools, access the links below for more information:

http://www.h2o.ai/

http://www.h2o.ai/resources/

http://learn.h2o.ai/content/index.html

How do R+H2O.ai work together?
As mentioned before, H2O.ai is an in-memory environment where R code is executed, the in-memory

computation is optimized to produce scalable data science results from your algorithms and functions. In my

own experience, this capability means what took me hours/days now I can do in seconds/minutes without the

worry of writing parallelized code. Also, with the many parameters in the well built packages such as DRF or

GBM, allows tremendous flexibility in the interactions and parameter setting capabilities due to H2O.ai

enhanced scalability features.

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

4

https://www.r-project.org/
https://www.rstudio.com/
http://www.h2o.ai/
http://www.h2o.ai/resources/
http://learn.h2o.ai/content/index.html

1. Introduction

Review of NHANES dataset

To study the attributes and feature of diabetes we will use the NHANES or National Health and Nutrition

Examination Study dataset. According to the NHANES website, the NHANES data represents:

“The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to

assess the health and nutritional status of adults and children in the United States. The survey is unique in

that it combines interviews and physical examinations.”

US National Health and Nutrition Examination Study

http://www.cdc.gov/nchs/nhanes.htm

The R implantation of the NHANES dataset is found in the package “NHANES” and the dataset name we will

access is called NHANESraw (NHANES 2009-2012 with adjusted weighting). Installing the packages and

accessing the library provides the dataset within your R session.

install.packages("NHANES")

library(NHANES)

dimnames(NHANESraw)[2]

To access the field definitions type ?NHANESraw. Examples below:

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

5

http://www.cdc.gov/nchs/nhanes.htm

1. Introduction

Diabetes analytics approach using H2O.ai + R

We will use the NHANESraw dataset in drawing insights into the features that help categorize and predict

diabetes. Our analytical plan is as follows:

1) Explore the dataset by performing exploratory data analytics (EDA) using statistical tools and graphs (via

Plotly).

2) Import the dataset within the H2O.ai environment and perform imputation on missing values and compare

those results to the EDA analysis to ensure structural difference are noted.

3) Perform clustering of the numerical features using H2O.ai functions for grouping patients into categories

that help in identifying segments that are more prone to diabetes.

4) Perform predictive analytics using H2O.ai functions Gradient Boosting Machine (GBM), Distributed

Random Forest (DRF), and Deep Learning on the target variable Diabetes using all the features in the

dataset (both imputed and note imputed) to help explain the likelihood that someone could contract the

dieses. We will perform accuracy and quality model verification steps as well to ensure model

performance is noted along the way.

Installing the needed packages for this demonstration

We will be using R to create the instance of H2O.ai and load medical data from the NHANES data set. To

walk through the examples in this document, please ensure you have these packages installed.

install.packages(c(“h2o”, “plotly”, “NHANES”,”reshape”,”ggplot2”,”dplyr”))

1) H2o

1) Alternative methods to install h2o

install.packages("h2o", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-jacobi/2/R",

getOption("repos"))))

For the latest recommended version, download the latest stable H2O-3 build

from the H2O download page:

1. Go to http://h2o.ai/download.

2. Choose the latest stable H2O-3 build.

3. Click the \Install in R" tab.

4. Copy and paste the commands into your R session.

2) plotly

3) NHANES

4) reshape

5) ggplot2

6) dplyr

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

6

2. Expository data analytics (EDA) feat. Plotly

Diabetes prevalence within the dataset and by features

We will perform our EDA with analysis on the target variable, Diabetes. We want to know:

• How many cases have diabetes verses those that do not have diabetes? (prevalence measure)

• What are the distributions of key features such as BMI, Cholesterol, Age, etc. for those with diabetes

verses those that do not have diabetes?

• What correlations (linear or non- linear relationships) can be detected across the set of features both in

relation to Diabetes / None-Diabetes and the overall holistic view?

What is Plotly?

Plotly is an open source framework that enables data scientist to develop interactive, browser-based charting

built on JavaScript graphing library, plotly.js. This allows data scientist to use API languages such as R,

Python, Java, etc. to build powerful visualizations with interactive capabilities.

We will use the Plotly API for R in this demonstration. To load and use the package in R, reference the below

code:

install.packages(“plotly")

or install development version from GitHub

devtools::install_github("ropensci/plotly")

library(plotly)

Examples and references by API can be found at the below web link:

https://plot.ly/

NHANES basic summary statistic

Let’s begin with a basic summary of the statistics and structure of the NHANES data set.

options(digits=2)

library(NHANES)

Extract NHANES to DF

nhanesDF <- as.data.frame(NHANESraw)

str(nhanesDF)

summary(nhanesDF$Diabetes)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

7

https://plot.ly/

2. Expository data analytics (EDA) feat. Plotly

From the structure function in R, we can see that there are 20,293 observations and 78 variables. There is a

mix of numerical and factor data types. Now, lets look briefly at statistics on each variables.

summary(nhanesDF)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

8

2. Expository data analytics (EDA) feat. Plotly

From the summary function in R we find common statistics by each variable. Since Diabetes is our target

variable in this study, let’s start with that. We see of the 20,293 observations 17,754 (~87% of total) do not

have diabetes, 1,706 (~8% of total) claim to have diabetes, and 833 (~4% of total) are NA’s.

Since our target variable only occurs within 8% of the observations, this is called a class imbalance problem.

This is important in that our target variable is not equally distributed among the observations, and therefore

distribution and sampling needs to be handled with care when making predictions in such cases.

We will observe how H2O.ai handles these cases both in clustering and prediction settings.

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

9

2. Expository data analytics (EDA) feat. Plotly

The other issue we can see within this data set is the prevalence of NA’s that varies across all our variables.

Let’s determine how many NA’s by variable we are looking at and determine a course of action to handle

these events. We will see later on how H2O.ai handles the treatment of NA’s within observations, but for now

let’s run the below code to determine how many NA’s by feature we are dealing with at this time:

Count NA's by columns

na_count <- as.list(sapply(nhanesDF, function(y) sum(length(which(is.na(y))))))

na_count <- as.data.frame(na_count)

na_count <- as.data.frame(t(na_count))

library(scales)

na_count$PCT <- na_count$V1 / nrow(nhanesDF)

na_count$PCT_desc <- percent(na_count$V1 / nrow(nhanesDF))

na_count <- na_count[order(-na_count$V1),]

na_count

Published by Colaberry Inc. © 2016

The code produces a data frame

that contains all the variables

within the NHANES dataset and

counts and calculates the

percentage of NA’s found within

each variable. The data frame is

sorted in descending order so that

we can see the variables that

contain the highest percentage of

NA’s found within that specific

variable.

Since 32 out of the 78 total

variables (~41%) contain 50% or

more NA’s within each variable we

will need to formulate a strategy

on how we can go forward with

our EDA, clustering, and

predictive analytics. We will

perform the below using H2O.ai

1) Impute the missing values with structural single column based

methods. H2O.ai provides a function for doing this but is very

limited. See packages such as MICE and others that perform

much more detailed methods for data imputation. Once data

is imputed, we will run our models, still within H2O.ai

framework.

2) H2O.ai framework provides treatment of NA’s within the

clustering and predictive analytical functions. We will us these

built capabilities and compare them to imputed value method.

10

2. Expository data analytics (EDA) feat. Plotly

There are situations in data analytical projects where missing values are not relevant and therefore can be

ignored without any consequences to the analytical results. Then, there are those situations where ignoring

missing values is not possible if the analytical results are to be completed. The later is the situation with the

NHANES data set and analytics of diabetes. What is needed is a method which is called data imputation and

is defined next.

What is data imputation?

Definition from Wikipedia

“the process of replacing missing data with substituted values. When substituting for a data point, it is known

as "unit imputation"; when substituting for a component of a data point, it is known as "item imputation".

Because missing data can create problems for analyzing data, imputation is seen as a way to avoid pitfalls

involved with listwise deletion of cases that have missing values. That is to say, when one or more values are

missing for a case, most statistical packages default to discarding any case that has a missing value, which

may introduce bias or affect the representativeness of the results. Imputation preserves all cases by

replacing missing data with an estimated value based on other available information. Once all missing values

have been imputed, the data set can then be analysed using standard techniques for complete data.”

Although the definition may sound simple, the considerations and execution of data imputation are very

complex. Consider these questions below given our data set of what know about the NHANES dataset to this

point:

1) What is the amount of data needed for data imputation? For example, how much is too much of NA’s

within a column to perform data imputation?

2) What statistical method do you use to formulate the value (mean, median, etc.)?

3) What other values within the data set could be used to “profile” the row and determine the value?

As you can see we can continue our line of questioning to nail down our imputation process.

Fortunately for us, H2O.ai has a simple function that allows us imputed data in a paralyzed fashion on our

local machines, while considering these and other types of questions that we can provide within the function.

We will loop through all the numeric columns and perform a simple imputation on the missing values.

What is data imputation?

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

11

2. Expository data analytics (EDA) feat. Plotly

Before we impute the data, let’s make a few assumptions around our study of diabetes so that we don’t end

up imputing data when we really don’t even need to in the first place.

1) Consider only adults in our study (> 17 years of age)

• Children skew our results when we consider BMI, age, and other factors

2) Impute only numerical data

• For this study we will only impute the numerical data (none of the factor variables) due to simplicity

(you can certainly impute factor types as well in h2o.ai, you just need to recode them to numerical types)

3) Assume some threshold of NA’s to be dropped form the study

• Let’s assume in this study that any field with greater than 75% NA’s is just too many to draw any

meaningful imputation close to the “actual” (supposedly) values.

Remove children from study

nhanesDF <- nhanesDF[which(nhanesDF$Age > 17),]

nrow(nhanesDF)

Data preparations before imputation

Now you should have 12,391 observation with this filter applied. Next we want to re-calculate and remove

anything over 75% NA’s

Count NA's by columns

na_count <- as.list(sapply(nhanesDF, function(y) sum(length(which(is.na(y))))))

na_count <- as.data.frame(na_count)

na_count <- as.data.frame(t(na_count))

library(scales)

na_count$PCT <- na_count$V1 / nrow(nhanesDF)

na_count$PCT_desc <- percent(na_count$V1 / nrow(nhanesDF))

na_count$variable <- colnames(nhanesDF)

na_count <- na_count[order(-na_count$V1),]

na_count_50 <- na_count[which(na_count$PCT < .75),]

keep <- dimnames(na_count_50)[[1]]

nhanesDF_keep <- nhanesDF[,c(keep)]

ncol(nhanesDF_keep)

This reduces the number of variables to 68. Next filter to those fields that are of numerical type. We drop ID

as we do not want to impute that field.

nhanes_numDF <- nhanesDF_keep[, sapply(nhanesDF_keep, is.numeric)]

nhanes_numDF$ID <- NULL

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

12

2. Expository data analytics (EDA) feat. Plotly

To summarize our data prep approach for data imputation, we filtered out children from our study, imputed on

the numerical values only, and kept the column where NA’s where less than 75%. A summary chart of the

percentage of NA’s is seen below to visualize the prevalence of NA’s by each column.

library(plotly)

library(ggplot2)

p <- plot_ly(na_count, x = variable, y = PCT, name = "NA Chart", type = "bar") %>%

layout(

title = "Percentage NA's By Each Column",

xaxis = list(title = ""),

margin = list(l = 60, r=60),

yaxis = list(title = ""),

font = list(size=8)

)

p

Data preparations before imputation (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

13

2. Expository data analytics (EDA) feat. Plotly

To execute the imputation, we will fire up an H2O instance. You will first need to install the package if you

haven’t done so already (see introduction).

To start an H2O instance execute the below R code:

Start H2O

library(h2o)

conn <- h2o.init(max_mem_size = '5g')

Creating an H2O instance in R

…\
…\

<computer name>

Yours will look different than what mine is showing depending on your system and resources on your

machine. The key information you want to notice is the total nodes, memory, and cores. This will give you an

indication of the parameters h2o will use to optimize in-memory computations on your machine.

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

14

2. Expository data analytics (EDA) feat. Plotly

We will perform a simple, single column imputation on the medians of each variable. The subject of

imputation is a whole (and interesting) field of work that expands greatly into more effective and detail

methods of imputation. To get further details on these methods of data imputation, suggest reviewing Stef

van Buuren and Karin Groothuis-Oudshoorn work in the below volume found within the “Journal of Statistical

Software”.

Multivariate Imputation by Chained Equations in R

http://www.jstatsoft.org/article/view/v045i03/v45i03.pdf

R package in CRAN is “mice”

We will be using the h2o.imput() wrapped within a standard R loop to perform the data imputation on each

numeric column that we have partition into its own data frame.

##---------------------------------------

Data Imputation

##---------------------------------------

nhanes_numDF_hex <- as.h2o(nhanes_numDF)

nhanes_numDF_Imp_hex <- nhanes_numDF_hex

for (i in 1:ncol(nhanes_numDF_Imp_hex)) {

nhanes_numDF_Imp_hex[,i] <- h2o.impute(nhanes_numDF_hex,

colnames(nhanes_numDF_hex[,i]),

method = "median", combine_method="lo")[,i]

}

summary(nhanes_numDF_Imp_hex)

Reviewing the h2o package reference we see the below arguments the impute function takes to perform the

data imputation.

Published by Colaberry Inc. © 2016

Data imputation in H2O+R

Once you run the code above, H2O will perform all the imputation (very fast) and stored the results we have

named “nhanes_numDF_Imp_hex”. Next we will perform our detail exploratory data analysis (EDA) on the

original data as well imputed to insure structural distribution has been maintained.

15

http://www.jstatsoft.org/article/view/v045i03/v45i03.pdf

2. Expository data analytics (EDA) feat. Plotly

To perform our analysis, we will use plotly & ggplot2 to visualize our results along with some statistics that tell

us facts regarding distribution, spread, means, correlation, variance. If you haven’t installed plotly and

ggplot2 in R please refer to the introduction section, then come back here to proceed. These are important

basic facts to consider when approaching any data set prior to further analysis.

Exploratory data analysis review

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

Proportions and summary tables

16

Let’s start by taking a quick look at the proportion of diabetes by a set of variables. We will just look at a

couple to get the general idea.

Let’s run a simple proportion tables on diabetes.

tbl <- table(nhanesDF$Diabetes)

prop.table(tbl)

As we can see that those with diabetes are 14% of our observations vs. those without are 86%.

Let’s break this down by the categorical variables gender, race, and education.

Let’s run a simple proportion tables on diabetes.

tbl <- with(nhanesDF, table(Gender, Diabetes))

prop.table(tbl, 1)

tbl <- with(nhanesDF, table(Race1, Diabetes))

prop.table(tbl, 1)

tbl <- with(nhanesDF, table(Education, Diabetes))

prop.table(tbl, 1)

The proportions seem to hold about the same across race and gender. However, the proportion of diabetes

found in those with an 8th grade education only (with out further progression) seem to have higher prevalence

of diabetes.

Let’s now look at some of the distributions by numerical values grouped by diabetes.

2. Expository data analytics (EDA) feat. Plotly

Before diving into the NHANES box plot data, lets do a brief review of box plots in general. Box plot are one

of my go to tools for studying variation within continuous data. It allows me to see the shape, central

tendency, and variations between and within central limits. Mastering the interpretation of these charts can

be very valuable in your daily consumption of statistical information. Below is a simply diagram that shows

the basic layout. More information on these charts can be found at: https://en.wikipedia.org/wiki/Box_plot

Box plots for distribution analysis

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

17

Now let’s look at a few continuous values and see how they look separated by diabetes. Well, perform one

on each by the imputed data and none imputed data because we want to ensure structurally, there are not

significant changes due to imputation.

Let’s start with total cholesterol (I’m just randomly selecting these of the key variable that intuitively are

associated with diabetes).

TotChol

plot_ly(nhanes_numDF, x = TotChol, color = Diabetes, type = "box")%>%

layout(title = "Box Whisker Total Cholesterol", margin = list(l = 65))

plot_ly(nhanes_numDF_Imp, x = TotChol, color = Diabetes, type = "box")%>%

layout(title = "Box Whisker Total Cholesterol Imputed",margin = list(l = 65))

As you can see, not much structural change in the data due to imputation. In fact, those with diabetes and

those without seem to have about the same look and shape of the distribution of cholesterol.

https://en.wikipedia.org/wiki/Box_plot

2. Expository data analytics (EDA) feat. Plotly

Box plots for distribution analysis (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

18

Let’s now look at two additional variables, age and weight. From the graph below we see there isn’t much

structural difference between the imputed data and the actual values without NA’s so we conclude that it’s ok

to proceed with the imputed data. Notice also the how much more the age median and bounds are for those

with diabetes and those without. Also, notice the difference in weight between diabetes and no diabetes.

Weight

plot_ly(nhanes_numDF, x = Weight, color = Diabetes, type = "box")%>%

layout(title = "Box Whisker Weight",margin = list(l = 65))

plot_ly(nhanes_numDF_Imp, x = Weight, color = Diabetes, type = "box")%>%

layout(title = "Box Whisker Weight Imputed",margin = list(l = 65))

Age

plot_ly(nhanes_numDF, x = Age, color = Diabetes, type = "box")%>%

layout(title = "Box Whisker Age",margin = list(l = 65))

plot_ly(nhanes_numDF_Imp, x = Age, color = Diabetes, type = "box")%>%

layout(title = "Box Whisker Age Imputed",margin = list(l = 65))

2. Expository data analytics (EDA) feat. Plotly

Now, we would like to understand what is the average variance from the central tendency among

observations that have diabetes and do not have diabetes by each variable. A good chart for this is a dot plot

where we will take each variables, and find the average for diabetes and non-diabetes observations, then

index them against the overall variable average. Each group, diabetes vs. no diabetes, will be represented by

a colored dot. This will tell use how much or less each group is compared to the overall average.

We will first run on the non-imputed data then run the same on the imputed values.

nhanes_numDF$Diabetes <- nhanesDF$Diabetes

nhanes_numDF$Study <- "NHANES"

nhanes_numDF$ID <- NULL

aggDiabetes <-aggregate(nhanes_numDF[,1:40], by=list(nhanes_numDF$Diabetes), FUN=mean,

na.rm=TRUE)

aggNHANES <- aggregate(nhanes_numDF[,1:40], by=list(nhanes_numDF$Study), FUN=mean,

na.rm=TRUE)

library(reshape)

DiabetesMetrics <- melt(aggDiabetes, id=c("Group.1"))

DiabetesMetrics <- cast(DiabetesMetrics, variable ~ Group.1)

colnames(DiabetesMetrics) <- c("Metric", "No.Diabetes", "Yes.Diabetes")

nhanesMetrics <- melt(aggNHANES, id=c("Group.1"))

colnames(nhanesMetrics) <- c("Study", "Metric", "Overall")

nhanesMetrics$Study <- NULL

nhanesMetrics_Final <- merge(DiabetesMetrics, nhanesMetrics, by="Metric")

nhanesMetrics_Final$No.Diabetes.Index <- 0

nhanesMetrics_Final$Yes.Diabetes.Index <- 0

for(i in 1:nrow(nhanesMetrics_Final)){

nhanesMetrics_Final[i,5] <- nhanesMetrics_Final[i,2]/nhanesMetrics_Final[i,4]

nhanesMetrics_Final[i,6] <- nhanesMetrics_Final[i,3]/nhanesMetrics_Final[i,4]

}

p <- plot_ly(nhanesMetrics_Final, x = No.Diabetes.Index, y = Metric, name = "No.Diabetes",

mode = "markers", marker = list(color = "pink", size=8)) %>%

add_trace(x = Yes.Diabetes.Index, name = "Yes.Diabetes", marker = list(color = "blue", size=8)) %>%

layout(

title = "Diabetes Metric Index Scale",

xaxis = list(title = ""),

margin = list(l = 60, r=60),

yaxis = list(title = ""),

font = list(size=8)

)

p

Dot plot of variables and diabetes (non-imputed data)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

19

2. Expository data analytics (EDA) feat. Plotly

From this chart we can see all the numeric variables on the right, the blue dots are those with diabetes mean

for that variable, and the green colored dot are those with out diabetes mean for each of the variables.

The scales are read as 1 is the overall mean and any value above or below the overall mean. So for

example, we see that age for the green (no diabetes) is at ~.96 which means 4% below average, however

the blue dot (with diabetes) indicates they are 28% higher in age than the average (value 1.28).

From this chart then we see that those with diabetes have higher/lower, compared to the total average, the

below variables:

Dot plot of variables and diabetes (non-imputed data) (continued…)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

• Weight (+10%)

• Sex Number of Praters (+22%)

• Number of Pregnancies (+22%)

• Number of Babies (+23%)

• Days of Physical Bad Health (+70%)

• Days with Mentally Bad Health (+17%)

• All Systolic Blood Pressure Readings (+6%)

• BMI (+12%)

• Alcohol Days (-13%)

• Alcohol Years (-44%)

• Testosterone (-14%)

• All Diastolic Blood Pressure Readings (-3%)

• Urine Volume Readings (-5%)

20

2. Expository data analytics (EDA) feat. Plotly

From this chart we can see all the numeric variables on the right, the blue dots are those with diabetes mean

for that variable, and the green colored dot are those with out diabetes mean for each of the variables.

The scales are read as 1 is the overall mean and any value above or below the overall mean. So for

example, we see that age for the green (no diabetes) is at ~.96 which means 4% below average, however

the blue dot (with diabetes) indicates they are 28% higher in age than the average (value 1.28).

From this chart then we see that those with diabetes have higher/lower, compared to the total average, the

below variables:

EDA conclusions

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

21

3. Clustering using H2O+R

H2O provides kmeans functions for clustering observations into homogeneous groups. The nice feature

within H2O is it’s ability to handle missing values, so we will run our clustering on both the imputed data set

we created in the previous section, and run the clustering on the original numerical fields that include missing

values. Then we will compare the results.

From an analytical goals standpoint, what we hope to achieve in this effort is to identify groups of people who

are more or less prone to contracting diabetes based solely on the numerical observations.

Here is how we will tackle the problem:

1) Overview what clustering is and how kmeans performs these capabilities very briefly (this is not a tutorial

to clustering methods. I’ll provide links if you need additional references and context)

2) Determine the appropriate number of clusters (even so, still more of an art than a science)

3) Run the kmeans function on both the imputed and NA numerical data sets

4) For each data set, use multidimensional scaling methods to determine separations of each cluster group

5) Analyze the features that make up each cluster to determine the driving forces behind each group

6) Add the cluster group identifiers back to each original data set for predictive analytics we will perform in

later sections

Clustering NHANES - diabetes analysis

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

Brief overview of clustering analysis

We want to cluster observations into groups to help execute different activities on each group for better

maximization of objectives. For example, in our case we want to identify groups with certain characteristics

so that when we identify how many within each group has higher / lower observations of diabetes we can

perform the needed activates of preventive care on a subset of individuals verses the whole enchilada.

We will use the popular kmeans method to perform our clustering activities within H2O. Kmeans partitions

observations based on what is called a centroid, which is a calculation of the groups center. It set a K points

as initial centroids, then loops through multiple iterations to find the optimal center point for each group. This

type of process in machine learning and statistics is called an unsupervised learning algorithm because we

never tell the algorithm a training, or testing data set to learn and tune. It simply attempts to find an optimal

point by reduction of the sum of square error for all the observations based on a distance metric (Euclidean,

Manhattan, etc.).

Suppose we had the data to the

left plotted in a chart. We can

use the kmeans method to find

the center points and identify a

unique cluster identifier to each

group that partitions each

observation in a homogeneous

cluster group. The is the

center point the kmeans method

assigned to each group.

Links for more information on kmeans:

https://en.wikipedia.org/wiki/K-means_clustering

http://www.statmethods.net/advstats/cluster.html

https://cran.r-project.org/web/packages/HSAUR/vignettes/Ch_cluster_analysis.pdf 22

https://en.wikipedia.org/wiki/K-means_clustering
http://www.statmethods.net/advstats/cluster.html
https://cran.r-project.org/web/packages/HSAUR/vignettes/Ch_cluster_analysis.pdf

3. Clustering using H2O+R

Although the aged old question has always been around how many clusters should one use tends to be

found out more through trail and error in most cases. We will perform H2O kmeans through an iterative loop

to determine the appropriate number of clusters.

The process to loop through multiple K clusters and extracting the needed sum of square error statistics by

each K can be computational draining. Luckily H2O in-memory optimization of the kmeans functions allows

us to process this much faster verses running it on local versions of kmeans.

The below R code will produce a data frame and supportive plotly graphic to help us determine the number

of clusters we should use in this example (this took my h2o instance about 13 minutes to perform 100 loops):

Determine k

dfK <- data.frame(No_Cluster=numeric(),

TotWithinSS=numeric(),

BetweenSS=numeric(),

TotSS=numeric(),

stringsAsFactors=FALSE)

k_iterations = 100

t1 <- Sys.time()

for (i in 2:k_iterations){

kmeans_imp_hex <- h2o.kmeans(training_frame = nhanes_numDF_Imp_hex,

k = i, max_iterations = 1000, standardize = T)

dfK[i-1,1] <- i

dfK[i-1,2] <- getTotWithinSS(kmeans_imp_hex)

dfK[i-1,3] <- getTotWithinSS(kmeans_imp_hex)

dfK[i-1,4] <- getTotWithinSS(kmeans_imp_hex)

}

t2 <- Sys.time()

t2-t1

Determine the appropriate number of clusters

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

The three metric for sum of square error is defined below:

• TotWithinSS: sum of squared distances within each cluster mean

• BetweenSS: sum of squared distances of each cluster mean

• TotSS: sum of squared distances of each data point to the global sample mean

The key benefit of using H2O in this exercise is its ability to cycle through quickly the kmeans function. This

process took my computer with H2O only 13 min, verses without H2O would have taken 20 hours. That is

very impressive performance considering this is all in-memory processing.

23

3. Clustering using H2O+R

The below code charts the three metrics together for a visual presentation by K and the sum of squared

distances.

library(reshape)

dfK_melt <- melt(dfK, id=c("No_Cluster"))

library(ggplot2)

library(plotly)

p <- ggplot(data = dfK_melt, aes(x = No_Cluster, y = value)) +

geom_point(aes(text = paste("SS:", variable)), size = 4) +

geom_smooth(aes(colour = variable, fill = variable)) + facet_wrap(~ variable)

(gg <- ggplotly(p))

What we are looking for is the “elbow” of the curve, and therefore will determine the number of clusters we

will use. Reason being is that we want to select a K where the sum of squared distances drop is significant

but beyond the “elbow” there really isn’t much improvement. We can see in our case we have our “elbow”

around K = 40, and therefore that’s what we will use. However, it can be argued that due to the gradual slope

of the line after 40 you might be justified in your thinking to keep the K higher. Again, this process of selecting

K is more art than science so you need to pick which works best for the context of your project goals.

Determine the appropriate number of clusters (continued…)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

24

3. Clustering using H2O+R

We will not run the version of H2O kmeans with K=40, and review each cluster size.

Run Kmeans

kmeans_hex <- h2o.kmeans(training_frame = nhanes_numDF_hex,

k = 40, max_iterations = 1000, standardize = T)

kmeans_imp_hex <- h2o.kmeans(training_frame = nhanes_numDF_Imp_hex,

k = 40, max_iterations = 1000, standardize = T)

kmeans_size <- data.frame(ClusterSizes = getClusterSizes(kmeans_hex), clusterID = seq(1:40))

kmeans_imp_size <- data.frame(ClusterSizes = getClusterSizes(kmeans_imp_hex), clusterID = seq(1:40))

library(plotly)

p <- plot_ly(

data = kmeans_size,

x = clusterID,

y = ClusterSizes,

name = "ClusterSizes non_imp",

type = "bar"

)%>% layout(title = "Cluster Sizes for the Non-Imputed Data Set", showlegend = FALSE)

p

p <- plot_ly(

data = kmeans_imp_size,

x = clusterID,

y = ClusterSizes,

name = "ClusterSizes non_imp",

type = "bar"

)%>% layout(title = "Cluster Sizes for the Imputed Data Set", showlegend = FALSE)

p

Run kmeans and review cluster sizes

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

25

We can see that we have some cluster with very few observation. Depending on your project, you can

determine the best course of action to deal with these cluster with lower levels of observations, but in our

case we will leave them to maintain structure (if we got more data to scale for example).

3. Clustering using H2O+R

Next, we wish to see the separation between each cluster considering all the variable centers. To accomplish

this, we will use multidimensional scaling (MDS) of the variables combining into a single metric by cluster.

The reason for this is that each variable centers are on different scales, and there for will need to be

normalized and fitted to a single metric (combining all variable scaled metrics) to determine distance of each

cluster.

Notice we are running one dataset that has been imputed and the other has not, which will show how H2O

kmeans handles missing values (if you were to run kmeans using R, it would not like the NA’s). This is a key

advantage of using H2O clustering capabilities.

Get centers

centers_hex <- getCenters(kmeans_hex)

centers_imp_hex <- getCenters(kmeans_imp_hex)

calc euclidean distance of centers

dist_euclidean <- dist(centers_hex, method = 'euclidean') # Euclidean Distances between the centers

dist_euclidean_imp <- dist(centers_imp_hex, method = 'euclidean') # Euclidean Distances between the centers

scale distance

fit <- cmdscale(dist_euclidean, eig = TRUE, k = 2) # k is the number of dimensions

fit_imp <- cmdscale(dist_euclidean_imp, eig = TRUE, k = 2) # k is the number of dimensions

Plot the Clusters in 2D Space

x <- fit$points[, 1]

y <- fit$points[, 2]

x_imp <- fit_imp$points[, 1]

y_imp <- fit_imp$points[, 2]

par(mfrow=c(1,2))

plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",

main = "NHANES Clusters - MDS", type = 'n', las = 1)

text(x, y, labels = row.names(centers_hex), cex = .7)

plot(x_imp, y_imp, xlab = "Coordinate 1", ylab = "Coordinate 2",

main = "NHANES Imputed Clusters - MDS", type = 'n', las = 1)

text(x_imp, y_imp, labels = row.names(centers_hex), cex = .7)

Clustering multidimensional scaling

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

26

What we did in the above was used the H2O function getCenters() for each data set, then calculated the

distance of each using Euclidean distance (you could use others here), scaled each distance by 2

dimensions, then plot the results of each.

3. Clustering using H2O+R

The graph below is the result of our MDS. Don’t worry about interpreting the x and y axis (there is no

meaning other than for plotting). What this tells us which clusters are different from each other. For example,

we can see that on the “NHANES Clusters – MDS” graph that cluster 17 and 26 are very close together. This

implies these groups are common to each other with some difference. On the other side, looking again at

“NHANES Clusters – MDS” graph, cluster 39 and 4 are very much different groups. We will need to make

note of these cluster separations as we attempt to interpret results later.

Another caution is that the cluster number between each graph are not the same, so you cannot say that

cluster 4 on the “NHANES Clusters – MDS” graph is the same as cluster 4 on the “NHANES Imputed

Clusters – MDS” graph.

Our conclusions in MDS is that we see similar separations and concertation of cluster forms between each

data set, which tells us that both clustered data set seem do about the same job (despite having missing

values). Although we are not going to do this here, you could go through each observations and determine

which cluster group was assign by each data set and calculate a similarity index to show how similar each

cluster are to each other (email me and I can share this with you).

Clustering multidimensional scaling (continued…)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

27

3. Clustering using H2O+R

Now we have our clusters, we want to find the proportions of diabetes within each group. The code below

shows graphically the number of diabetes individuals vs. those that do not by cluster.

Combine the incidents with their Clusters

clusters_hex <- h2o.predict(kmeans_hex, nhanes_numDF_hex)

nhanes_numDF_clust_result_hex <- h2o.cbind(nhanes_numDF_hex,clusters_hex)

summary(nhanes_numDF_clust_result_hex)

clusters_imp_hex <- h2o.predict(kmeans_imp_hex, nhanes_numDF_hex)

nhanes_numDF_clust_imp_result_hex <-

h2o.cbind(clusters_imp_hex,nhanes_numDF_Imp_hex,nhanes_numDF_hex$Diabetes)

summary(nhanes_numDF_clust_imp_result_hex)

library(plotly)

library(ggplot2)

nhanes_numDF_clust_result <- as.data.frame(nhanes_numDF_clust_result_hex)

colnames(nhanes_numDF_clust_result)[40] <- "clusterID"

nhanes_numDF_clust_imp_result <- as.data.frame(nhanes_numDF_clust_imp_result_hex)

colnames(nhanes_numDF_clust_imp_result)[1] <- "clusterID"

set clusterID as factor type (not numeric)

nhanes_numDF_clust_result$clusterID <- as.factor(nhanes_numDF_clust_result$clusterID)

nhanes_numDF_clust_imp_result$clusterID <- as.factor(nhanes_numDF_clust_imp_result$clusterID)

Add diabetes

nhanes_numDF_clust_result$Diabetes <- nhanesDF_keep$Diabetes

nhanes_numDF_clust_imp_result$Diabetes <- nhanesDF_keep$Diabetes

Percentage of diabetes per cluster

library(dplyr)

nhanes_numDF_clust_imp_result["Count"] <-1

df2 <- aggregate(nhanes_numDF_clust_imp_result[c("Count")],

by=list(Diabetes=nhanes_numDF_clust_imp_result$Diabetes,

clusterID=nhanes_numDF_clust_imp_result$clusterID), FUN=sum, na.rm=TRUE)

p <- plot_ly(df2, x = clusterID, y = Count, type = "bar", color = Diabetes)

layout(p, barmode = "stack")

Clustering and diabetes

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

28

From the graph we see the count of observations by

cluster of those with and without diabetes. For

example, one of the bigger clusters, cluster 36,

shows very little diabetes based on the total number

of observations, verses cluster 33 which shows very

high amounts of observation of diabetes.

It is difficult to gauge exactly the proportion of

diabetes within each cluster, so let’s build another

graph of the percentage of diabetes within each

cluster.

3. Clustering using H2O+R

The code below is similar to the previous but shows as percentage vs. counts.

df3 <- cast(df2, clusterID~Diabetes)

df3[is.na(df3)] <- 0

df3$NoPCT <- df3$No / (df3$No+df3$Yes)

df3$YesPCT <- 1-df3$NoPCT

df3$No <- NULL

df3$Yes <- NULL

df4 <- melt(df3, id=c("clusterID"))

p <- plot_ly(df4, x = clusterID, y = value, type = "bar", color = Diabetes)

layout(p, barmode = "stack")

Clustering and diabetes (continued…)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

29

This graph is much more easily represented

for our study to determine the proportion of

diabetes found within each cluster. Going back

to cluster 33, we see that ~35% of the

observations are those with diabetes.

The key question now is what makes each

cluster different? When we apply the diabetes

proportions we might determine groups of

observations and features that are more

commonly associated with diabetes.

3. Clustering using H2O+R

In summary, we have used the capabilities of R and H2O to perform clustering by:

1) Briefly reviewing the overall concept of clustering and how H2O capabilities enhances the process of

computational grouping observations into homogeneous groups.

2) We then looped through 100 clustering models to then find the appropriate number of cluster, k, by

selecting the k where MSE is reduced enough and not really significantly declining after that point. This

emphasized the point that using H2O is advantageous when computational intensity raises for looping

through multiple interactions of high dimensional data.

3) Next we used multidimensional scaling of the cluster centers by each feature to determine distances from

each cluster which indicates just how similar and different each cluster are from one another,

4) Finally, we then added the clustered observations back into the original data set and determined the

prevalence of diabetes found within each cluster.

Although its nice that we have these clusters and know what proportions of diabetes are found in each, we

need to asses what are the main features that contribute to having diabetes within each of these groups and

predicting the likelihood of the diabetes event occurring in each.

We will explore that aspect next using H2O predictive capabilities.

Clustering summary

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

30

4. Predicting diabetes using H2O+R

As stated previously, one of our objectives in our analysis is to assess the predictive features that contribute

to diabetes. We have built cluster groups, and now want to use the fantastic predictive capabilities H2O has

built within R to accomplish this activity.

We will build four types of models used to conduct a predictive model on our target variable diabetes. All four

fall within the classification type models as we are attempting to “guess” the class of those with diabetes and

those that do not have diabetes.

The four models within H2O we will deploy on our cluster groups are listed below:

1) Distributed Random Forest:

• An ensemble decision tree method

• Using predictions from multiple decision trees, the model combines each resulting prediction

• Each tree gets a vote used in the bagging method

• It is distributed in terms of the parallelized decision tree process across each H2O clusters

2) Gradient Boosting Machine:

• Can be either ensemble of either regression or classification tree models, we will use classification

tree GBM

• Is an expansion of the “Multi additive regression tree” of MART combines two methods gradient

optimization of loss matrix and boosting for “weak” classifiers producing a committee based

approach

• Uses distributed trees as well

3) General Linear Model:

• A general linear regression method tool kit for conducting linear models

• Since our target is binary (diabetes found, not found), we will use a logistic regression approach

• Uses likelihood optimization in fitting the model parameters

4) Deep Learning:

• Similar to Neural Networks, deep learner are feedforward Neural Networks with many layers and

call fall into other categories such as Deep Belief Network (DBN), Deep Neural Network (DNN),

etc.

• Weights are adapted to minimize the error on the labeled training data

H2O has excellent resources you can read more about these and other models accessing this link:

http://www.h2o.ai/resources/

No free lunch approach to modeling means there isn’t just one model that does everything you need, so

therefore we will run through all four and compare them on efficacy, accuracy, and parameter setting.

We will supervise all four models as well, setting up training, testing, and a hold out partitioning of each

clusters data.

Predictive models in H2O

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

31

http://www.h2o.ai/resources/

4. Predicting diabetes using H2O+R

We will use Distributed Random Forest (DRF) within H2O to predict the class of diabetes by features for

each cluster group. Our goal is to extract key features by cluster that contributes to the presence of diabetes.

As mentioned before, DRF is an ensemble decision tree method and therefore we the number of trees to use

within our model.

One thing we need to be up front and honest to ourselves is that this is a class imbalanced problem

(mentioned previously) which will cause us problems in both our assessment of parameter quality and

predictive accuracy measures. Let’s dive into the process and study what this means.

First let’s get our data set ready for modeling by only running the model on cluster with greater than 100

observations:

library(dplyr)

nhanes_DF_imp_sup <- nhanes_numDF_clust_imp_result

library(sqldf)

cluster_keep <- sqldf("select sum(count) as clust_cnt, clusterID from nhanes_DF_imp_sup group by count, clusterID")

cluster_keep <- cluster_keep[which(cluster_keep$clust_cnt > 100),]

nhanes_DF_imp_sup_keep <- sqldf("select * from nhanes_DF_imp_sup where clusterID in (select clusterID from

cluster_keep)")

nhanes_DF_imp_sup_keep$Diabetes0 <- NULL

nhanes_DF_imp_sup_keep$ID <- NULL

nhanes_DF_imp_sup_keep$Count <- NULL

nhanes_DF_imp_sup_hex <- as.h2o(nhanes_DF_imp_sup_keep)

summary(nhanes_DF_imp_sup_hex)

The code above results in a data frame for our supervised (sup) learning models where we have only considered clusters

with > 100 observations. We also need a table of all the features listed, so that’s what nhanes_DF_imp_sup_keep_var data

frame holds.

Next we create a blank data frame where we insert each model important variables along with key validation statistics by

each cluster.

model_results_drf <- data.frame(No_Cluster=character(),

variable_importances=character(),

relative_importance=numeric(),

scaled_importance=numeric(),

percentage=numeric(),

Error_Diabetes=numeric(),

stringsAsFactors=FALSE)

Running Distributed Random Forest by cluster

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

32

4. Predicting diabetes using H2O+R

We will now loop through each cluster (the ones we kept) and produce a random forest model on each

cluster, extracting each important feature and saving it to our blank data frame. We also are interested in the

confusion matrix error rates on “Yes” to diabetes. Typically, in class imbalance problems, the models produce

great results on the training and test data set on the prevalent condition (in our case those without diabetes)

but suffer on the end of predicting the lower frequency event (those with diabetes). Our goal is to get the

error rate as low as possible on the “Yes” to diabetes, even if that means increasing error on “No”. The

reason is that it’s more costly in our case to miss a diabetes diagnoses, vs. miss-diagnosing someone

without diabetes, but the models claims they do. This is a common dilemma in healthcare analytics and

researchers must always weigh the cost of each study (patient outcomes focused).

t1 <- Sys.time()

for (i in 1:nrow(cluster_keep)){

clust_ID <- as.character(cluster_keep[i,2])

clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusterID==clust_ID,]

clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))

r <- h2o.runif(clustDF)

train <- clustDF[r < 0.6,]

test <- clustDF[(r >= 0.6) & (r < 0.9),]

hold <- clustDF[r >= 0.9,]

response <- "Diabetes"

predictors <- setdiff(names(clustDF), response)

try(drf <- h2o.randomForest(x = predictors,

y = response,

training_frame = train,

validation_frame = test,

ntrees = 1000,

balance_classes = T), silent = T)

drf_var_variable_importances <- as.data.frame(drf@model$variable_importances)

perf_drf <- h2o.performance(drf, clustDF)

drf_var_variable_importances$Error_Diabetes <- h2o.confusionMatrix(perf_drf)[2,3]

drf_var_variable_importances$No_Cluster <- clust_ID

model_results_drf <- rbind(model_results_drf,drf_var_variable_importances)

}

t2 <- Sys.time()

t2-t1

Let’s review the parameters we set here. First, as in all the models we will run, we set the target and predictors, test, and

train parameters. Next, ntrees allow us to set the number of trees to cycle through. Remember, RF trees get a vote and

each will cycle through for the best result based on reduction of MSE. I selected 1,000 trees which works well with H2O’s

paralyzed processing. The balance classes = True lets the DRF know it needs to sample in a certain why due to class

imbalance. Finally, We loop through all this and predict based on the Hold data set and grab the diabetes = Yes error rate.

Running Distributed Random Forest by cluster (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

33

4. Predicting diabetes using H2O+R

The output of the previous exercise produced a data frame that contains all the variables we have

considered and appended the variable importance, error rate on the hold out data fro diabetes = “Yes”, and

other statistics by each cluster. We can now take that data frame, filter it down to only include those feature

that have high levels of importance as it relates to predicting diabetes for each cluster. I selected 70% and

above variable importance just to keep thing simple for graphing the results. Run the code below and lets

review the out puts.

model_results_drf_filtered <- sqldf("select * from model_results_drf where scaled_importance > .7")

plot_ly(model_results_drf_filtered, x = percentage, y = variable,

mode = "markers", color = No_Cluster) %>%

layout(title = "DRF Variable Importance by Cluster",

xaxis = list(title = "Percentage Importance"),

margin = list(l = 120))

plot_ly(model_results_drf_filtered, x = percentage, y = variable, z=Error_Diabetes,

text = paste("Clusters: ", No_Cluster),

type="scatter3d", mode="markers", color = No_Cluster)%>%

layout(title = "DRF Variable Importance by Cluster (Imporatnace & Error Rate)",

xaxis = list(title = "Percentage Importance"),

margin = list(l = 20))

Running Distributed Random Forest by cluster (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

34

The first graph produces a graph that shows the variables and importance by each cluster. We can see age

is a popular feature among the clusters for diabetes which tells us that this is a key feature probably all

groups. It appears Cluster 27 puts a lot of focus of importance on BMI (weight and height ratio), which far

exceeds the rest of the clusters. If you filter this outlier out by select the rest of the data points, you can see a

re-scaled version that easier to read.

The second chart includes the 3rd dimension of diabetes = “Yes” error rate. Since this is 3 dimensional space,

you can see variable importance with high levels of importance and low levels of error rate by cluster. From

this graph we are able to see for example cluster 5 shows low error rate and high level importance for “Age

of 1st Baby”.

4. Predicting diabetes using H2O+R

As mentioned in the section introduction, Gradient Boosting Machine (GBM) can be used in multiple

predictive fashions such as regression or tree based classification. We are interested in the later as we are

attempting to classify individuals as either likely to have or contract diabetes or not.

The outputs will be identical to that of what we did for DRF, but there are key difference in the parameters

used and the treatment GBM runs through vs. DRF.

First we create again a blank data frame where we will store all our model performance metrics.

model_results_gbm <- data.frame(No_Cluster=character(),

variable_importances=character(),

relative_importance=numeric(),

scaled_importance=numeric(),

percentage=numeric(),

Error_Diabetes=numeric(),

stringsAsFactors=FALSE)

t1 <- Sys.time()

for (i in 1:nrow(cluster_keep)){

clust_ID <- as.character(cluster_keep[i,2])

clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusterID==clust_ID,]

clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))

r <- h2o.runif(clustDF)

train <- clustDF[r < 0.6,]

test <- clustDF[(r >= 0.6) & (r < 0.9),]

hold <- clustDF[r >= 0.9,]

response <- "Diabetes"

predictors <- setdiff(names(clustDF), response)

try(gbm <- h2o.gbm(x = predictors,

y = response,

training_frame = train,

validation_frame = test,

ntrees = 1000,

max_depth = 6,

learn_rate = 0.1,

stopping_rounds = 1,

stopping_tolerance = 0.01,

stopping_metric = "misclassification",

balance_classes = T,

seed = 2000000), silent = T)

gbm_var_variable_importances <- as.data.frame(gbm@model$variable_importances)

perf_gbm <- h2o.performance(gbm, clustDF)

gbm_var_variable_importances$Error_Diabetes <- h2o.confusionMatrix(perf_gbm)[2,3]

gbm_var_variable_importances$No_Cluster <- clust_ID

model_results_gbm <- rbind(model_results_gbm,gbm_var_variable_importances)

}

t2 <- Sys.time()

t2-t1

Running Gradient Boosting Machine by cluster

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

35

We partition the data into test, train and hold samples for

each cluster, same as we did for DRF

ntees is the same, however, in GBM we are penalized

for overfitting, so H2O has build what is called grid

search models to tune these parameters. We don’t

discuss that here, but you can find out more about these

capabilities on the H2O resource site I mentioned

previously.

4. Predicting diabetes using H2O+R

Again, as we did for the DRF we will look at the features by cluster and value them by importance and error

rates.

model_results_gbm_filtered <- sqldf("select * from model_results_gbm where scaled_importance > .7")

plot_ly(model_results_gbm_filtered, x = percentage, y = variable,

mode = "markers", color = No_Cluster) %>%

layout(

title = "GBM Variable Importance by Cluster",

xaxis = list(title = "Percentage Importance"),

margin = list(l = 120)

)

plot_ly(model_results_gbm_filtered, x = percentage, y = variable, z=Error_Diabetes,

text = paste("Clusters: ", No_Cluster),

type="scatter3d", mode="markers", color = No_Cluster)

Running Gradient Boosting Machine by cluster (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

36

As you can see GBM produces outputs similar to that of DRF except they run much differently. The error

rates on average are higher on GBM verses DRF. Running the Grid function on GBM on each cluster might

be beneficial to tune each set of models customized for each group.

4. Predicting diabetes using H2O+R

Now we will run the Generalized Linear Model (GLM). GLM doesn’t have the same variable importance as

with DRF and GBM. What it odes have is a nice feature for standardized coefficient that will help use extract

out the important variables by cluster.

model_results_glm <- data.frame(No_Cluster=character(),

variable_importances=character(),

coefficients=numeric(),

sign=numeric(),

stringsAsFactors=FALSE)

t1 <- Sys.time()

for (i in 1:nrow(cluster_keep)){

clust_ID <- as.character(cluster_keep[i,2])

clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusterID==clust_ID,]

clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))

r <- h2o.runif(clustDF)

train <- clustDF[r < 0.6,]

test <- clustDF[(r >= 0.6) & (r < 0.9),]

hold <- clustDF[r >= 0.9,]

response <- "Diabetes"

predictors <- setdiff(names(clustDF), response)

try(glm <- h2o.glm(x = predictors,

y = response,

training_frame = train,

validation_frame = test,

nfolds = 5,

family = "binomial"), silent = T)

glm_var_variable_importances <- as.data.frame(glm@model$standardized_coefficient_magnitudes)

perf_glm <- h2o.performance(glm, clustDF)

glm_var_variable_importances$Error_Diabetes <- h2o.confusionMatrix(perf_glm)[2,3]

glm_var_variable_importances$No_Cluster <- clust_ID

model_results_glm <- rbind(model_results_glm,glm_var_variable_importances)

}

t2 <- Sys.time()

t2-t1

head(model_results_glm,10)

Running Generalized Linear Model by cluster

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

37

4. Predicting diabetes using H2O+R

The nice thing about the GLM coefficients is that it not only tells the importance, but also the type of

relationship the variables has with the target (positive or negative).

model_results_glm_filtered <- sqldf("select * from model_results_glm where coefficients > .5")

plot_ly(model_results_glm_filtered, x = coefficients, y = names,

mode = "markers", color = No_Cluster) %>%

layout(

title = "GLM Variable Importance by Cluster",

xaxis = list(title = "Scaled Coefficients"),

margin = list(l = 120)

)

plot_ly(model_results_glm_filtered, x = coefficients, y = names, z=Error_Diabetes,

text = paste("Clusters: ", No_Cluster),

type="scatter3d", mode="markers", color = No_Cluster)

Running Generalized Linear Model by cluster (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

38

Again, “Age” pops up as the more prevalence variable of importance across most clusters. Interesting that

cluster 5 had significantly better error rate on Diabetes = “Yes” than the rest. Number of babies also pops up

for cluster 7 which indicates these might be our pregnant mothers with gestational diabetes. Again, not

concluded but simply identifying data points of observations. A medical physician would need to diagnose

you before any action should be taken.

4. Predicting diabetes using H2O+R

Now we will run the deep learning model. We specify the number of hidden nodes, tell it’s a imbalanced data

set, and tell it we want to get the variable importance from the model outputs.

model_results_dl <- data.frame(No_Cluster=character(),

variable_importances=character(),

relative_importance=numeric(),

scaled_importance=numeric(),

percentage=numeric(),

variable_included=character(),

Error_Diabetes=numeric(),

stringsAsFactors=FALSE)

t1 <- Sys.time()

for (i in 1:nrow(cluster_keep)){

clust_ID <- as.character(cluster_keep[i,2])

clustDF <- nhanes_DF_imp_sup_hex[nhanes_DF_imp_sup_hex$clusterID==clust_ID,]

clustDF <- h2o.removeVecs(clustDF, c("clusterID","Count"))

r <- h2o.runif(clustDF)

train <- clustDF[r < 0.6,]

test <- clustDF[(r >= 0.6) & (r < 0.9),]

hold <- clustDF[r >= 0.9,]

response <- "Diabetes"

predictors <- setdiff(names(clustDF), response)

try(dl <- h2o.deeplearning(x = predictors,

y = response,

training_frame = train,

activation = "Tanh",

balance_classes = TRUE,

input_dropout_ratio = 0.2,

hidden = c(100, 100, 100, 100, 100),

epochs = 10,

variable_importances = T), silent = T)

dl_var_variable_importances <- as.data.frame(dl@model$variable_importances)

perf_dl <- h2o.performance(dl, clustDF)

dl_var_variable_importances$Error_Diabetes <- h2o.confusionMatrix(perf_dl)[2,3]

dl_var_variable_importances$No_Cluster <- clust_ID

model_results_dl <- rbind(model_results_dl,dl_var_variable_importances)

}

t2 <- Sys.time()

t2-t1

head(model_results_dl,10)

Running Deep Learning by cluster

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

39

4. Predicting diabetes using H2O+R

Let’s take a look at our variable importance like we have done on the others.

model_results_dl_filtered <- sqldf("select * from model_results_dl where scaled_importance > .98")

plot_ly(model_results_dl_filtered, x = percentage, y = variable,

mode = "markers", color = No_Cluster) %>%

layout(

title = "DL Variable Importance by Cluster",

xaxis = list(title = "Percentage Importance"),

margin = list(l = 120)

)

plot_ly(model_results_dl_filtered, x = percentage, y = variable, z=Error_Diabetes,

text = paste("Clusters: ", No_Cluster),

type="scatter3d", mode="markers", color = No_Cluster)

Running Deep Learning by cluster (continued…)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

40

We see once again the important variables by each cluster in the left graph and the 3D graph that includes

error rate of the diabetes = “Yes” category.

4. Predicting diabetes using H2O+R

Now that we have an understanding of the features/variables that drive each of the clusters across four

different models, we will now run all four models on the entire imputed data set.

This will be similar to the process we did earlier with exception to adding the predictive outputs back into the

original data set.

First, we run the Distributed Random Forest:

*************** DRF ***************************************

str(nhanes_DF_imp_sup_hex)

r <- h2o.runif(nhanes_DF_imp_sup_hex)

train <- nhanes_DF_imp_sup_hex[r < 0.6,]

test <- nhanes_DF_imp_sup_hex[(r >= 0.6) & (r < 0.9),]

hold <- nhanes_DF_imp_sup_hex[r >= 0.9,]

response <- "Diabetes"

predictors <- setdiff(names(nhanes_DF_imp_sup_hex), response)

drf <- h2o.randomForest(x = predictors, y = response,

training_frame = train,

validation_frame = test,

ntrees = 1000,

balance_classes = T)

drf

drf_pred_hex <- h2o.predict(drf, newdata=hold)

perf_drf <- h2o.performance(drf, nhanes_DF_imp_sup_hex)

h2o.confusionMatrix(perf_drf)

drf_pred_hex2 <- h2o.predict(drf, newdata=nhanes_DF_imp_sup_hex)

nhanes_DF_imp_sup_hex$DRF_predict <- drf_pred_hex2$predict

nhanes_DF_imp_sup_hex$DRF_Yes <- drf_pred_hex2$Yes

nhanes_DF_imp_sup_hex$DRF_No <- drf_pred_hex2$No

Bringing it all together

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

41

You can see the new fields added to the data

site at the end.

4. Predicting diabetes using H2O+R

Now that we have an understanding of the features/variables that drive each of the clusters across four

different models, we will now run all four models on the entire imputed data set.

This will be similar to the process we did earlier with exception to adding the predictive outputs back into the

original data set.

First, we run the Distributed Random Forest:

*************** DRF ***************************************

str(nhanes_DF_imp_sup_hex)

r <- h2o.runif(nhanes_DF_imp_sup_hex)

train <- nhanes_DF_imp_sup_hex[r < 0.6,]

test <- nhanes_DF_imp_sup_hex[(r >= 0.6) & (r < 0.9),]

hold <- nhanes_DF_imp_sup_hex[r >= 0.9,]

response <- "Diabetes"

predictors <- setdiff(names(nhanes_DF_imp_sup_hex), response)

drf <- h2o.randomForest(x = predictors, y = response,

training_frame = train,

validation_frame = test,

ntrees = 1000,

balance_classes = T)

drf

drf_pred_hex <- h2o.predict(drf, newdata=hold)

perf_drf <- h2o.performance(drf, nhanes_DF_imp_sup_hex)

h2o.confusionMatrix(perf_drf)

drf_pred_hex2 <- h2o.predict(drf, newdata=nhanes_DF_imp_sup_hex)

nhanes_DF_imp_sup_hex$DRF_predict <- drf_pred_hex2$predict

nhanes_DF_imp_sup_hex$DRF_Yes <- drf_pred_hex2$Yes

nhanes_DF_imp_sup_hex$DRF_No <- drf_pred_hex2$No

Bringing it all together (continued…)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

42

You can see the new fields added to the data

site at the end.

4. Predicting diabetes using H2O+R

Next, we run the Gradient Boosting Machine:

*************** GBM ***************************************

gbm <- h2o.gbm(x = predictors,

y = response,

training_frame = train,

validation_frame = test,

ntrees = 1000,

max_depth = 6,

learn_rate = 0.1,

stopping_rounds = 1,

stopping_tolerance = 0.01,

stopping_metric = "misclassification",

balance_classes = T,

seed = 2000000)

gbm

gbm_pred_hex <- h2o.predict(gbm, newdata=hold)

perf_gbm <- h2o.performance(gbm, nhanes_DF_imp_sup_hex)

h2o.confusionMatrix(perf_gbm)

gbm_pred_hex2 <- h2o.predict(gbm, newdata=nhanes_DF_imp_sup_hex)

nhanes_DF_imp_sup_hex$GBM_predict <- gbm_pred_hex2$predict

nhanes_DF_imp_sup_hex$GBM_Yes <- gbm_pred_hex2$Yes

nhanes_DF_imp_sup_hex$GBM_No <- gbm_pred_hex2$No

summary(nhanes_DF_imp_sup_hex)

Then, we run the Generalized Linear Model:

glm <- h2o.glm(x = predictors,

y = response,

training_frame = train,

validation_frame = test,

nfolds = 5,

family = "binomial")

glm

glm_pred_hex <- h2o.predict(glm, newdata=hold)

perf_glm <- h2o.performance(glm, nhanes_DF_imp_sup_hex)

h2o.confusionMatrix(perf_glm)

glm_pred_hex2 <- h2o.predict(glm, newdata=nhanes_DF_imp_sup_hex)

nhanes_DF_imp_sup_hex$GLM_predict <- glm_pred_hex2$predict

nhanes_DF_imp_sup_hex$GLM_Yes <- glm_pred_hex2$Yes

nhanes_DF_imp_sup_hex$GLM_No <- glm_pred_hex2$No

summary(nhanes_DF_imp_sup_hex)

Bringing it all together (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

43

4. Predicting diabetes using H2O+R

Finally, we run the Deep Learning model:

*************** DL ***************************************

dl <- h2o.deeplearning(x = predictors,

y = response,

training_frame = train,

activation = "Tanh",

balance_classes = TRUE,

hidden = c(100, 100, 100, 100, 100),

epochs = 100)

dl

dl_pred_hex <- h2o.predict(dl, newdata=hold)

perf_dl <- h2o.performance(dl, nhanes_DF_imp_sup_hex)

h2o.confusionMatrix(perf_dl)

dl_pred_hex2 <- h2o.predict(dl, newdata=nhanes_DF_imp_sup_hex)

nhanes_DF_imp_sup_hex$BL_predict <- dl_pred_hex2$predict

nhanes_DF_imp_sup_hex$DL_Yes <- dl_pred_hex2$Yes

nhanes_DF_imp_sup_hex$DL_No <- dl_pred_hex2$No

summary(nhanes_DF_imp_sup_hex)

We have run all four models, and stored the predictive outputs back within the original imputed data set.

Bringing it all together (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

44

4. Predicting diabetes using H2O+R

The final thing to do is to visualize how much each cluster is at risk of contracting diabetes.

*************** Viz Clusters ****************************

nhanes_DF_Final_Viz <- as.data.frame(nhanes_DF_imp_sup_hex)

str(nhanes_DF_Final_Viz)

agg_nhanes_Viz <- sqldf("select clusterID, avg(DRF_Yes) as DRF,

avg(GBM_Yes) as GBM, avg(GLM_Yes) as GLM, avg(DL_Yes) as DL from nhanes_DF_Final_Viz group by clusterID")

library(reshape)

agg_nhanes_Viz2 <- melt(agg_nhanes_Viz, id="clusterID")

plot_ly(agg_nhanes_Viz2, x = clusterID, y = value, type = "bar", color = variable).

Bringing it all together (continued …)

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

45

We can see from the graph that clearly cluster 5 is the most at risk indicated by all four models. The risk

percentages range from ~15% to 40%. Not surprising we see these ranges so wide as our predicted error

rate on each model was ~20-30% depending on the model.

5. Summary / Conclusion

We did several things in this walk through of H2O.ai and R capabilities dealing with the analysis of diabetes.

Let’s recap each step and what we discovered along the way:

1) Through the EDA phase we learned that number of pregnancies, number of babies, age and weight seem

to be areas where large separations in central tendency and variation exists between those with diabetes

and those without. Also, the use of plotly for our visualizations allowed us to uniquely drill down and filter

within the EDA and other areas as well.

2) We created 40 clusters groups to partition our data set within identifiable homogeneous groups and

overlaid the proportion of diabetes found within each.

3) Next we four ran individual models on each cluster group (filtered by at least 100) to determine the main

drivers that help predicting diabetes within each group.

4) Finally, we again ran all four models on the entire imputed data set appending the predictive outputs back

within the data set to determine overall cluster risk of diabetes.

This approach is useful in that it helps researches develop and validate assumptions about risk of diabetes

and how those risk vary by certain groups of individuals. Some of the analysis showed that the number of

pregnancies and number of babies as key factors that contribute heavily to diabetes. This might help

researches identify other features as well as groups for gestational diabetes.

What did we learn/do?

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

46

Review of H2O capabilities

Future enhancements & recommendations

The H2O.ai platform allowed use to iterate through several computational intense process within R such as

data imputation, finding the right k size for clusters, converging through thousands of trees for modeling, etc.

This capabilities are value add into the data scientist tool kit and helps with speed of processing.

This work was fun to put together and very insightful for me as well, but with any documentation on

approaches in analytics there are flaws and this document is no exception. I’ve laid out below how this work

can be enhanced below:

1) The data imputation methods are very simple within H2O.ai and as a result you get simple basic answers.

Our imputation method using H2O.ai could be enhanced by using “by” clauses within our function of

features that have more (or fully) presence within the data set. By using features that indicated no

presence of NA’s such as “Age”, “Gender”, etc. could be used to help impute missing values. H2O.ai

imputation methods can also be enhanced by taking more capabilities on like those found within the R

“mice” package (Multivariate Imputation by Chained Equations).

2) Although the grid functions for parameter setting was run for the Gradient Boosting Machine sections, it

was not included in this work.

3) The overall error rates of these models are too high for diabetes = “Yes” and therefore no causal

conclusion or actions should be taken fully as a result of the models predictive outputs. The H2O.ai

models could be enhanced by allowing for weighting the loss matrix. To some degree it does with the

balancing parameter, however if you wanted to penalize the error rate on “Yes” more than “No” there is no

place to do that as far as I have found.

5. Summary / Conclusion

Future enhancements & recommendations

Published by Colaberry Inc. © 2016 – Data Science Center of Excellence

47

This may go without saying, but just in case: the
results of this analysis demonstrated in this
document does not in any way suggestion anyone to
self diagnose or take any medical or any other
actions as a result of the results produced in this
document. Please see a certified and licensed
physician for any medical related concerns or
questions you might have.

